
APPENDIX 1.1 MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING 

Mathematical model plays an important role in engineering problem solving. The engineering 

problem solving process in parachute design is illustrated as follows: 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.1 (a): Problem solving process in parachute design 

 To develop the mathematical model for calculating the velocity of a parachute, we can use 

the knowledge from the existing theory/physical law (e.g. Newton’s Law) or understand the problem 

by empirical means (e.g. by observation and experiment). In this case, Newton’s 2nd Law is applied, 

where ∑ 𝐹(𝑡) = 𝑚𝑎(𝑡). A free-body diagram is drawn as below. Assume that the drag force due to 

air resistance is proportional to the falling velocity, the downward motion is positive, and 𝑔 =

9.81𝑚𝑠−2. Then, we are able to develop the mathematical model. 

 

Figure A1.1 (b): Free-body diagram of the falling parachutist 

  

The mathematical modelling of the falling parachutist’s velocity: 

Problem: Impact velocity upon landing is an important 

parameter when designing a parachute. Develop a mathematical 

model to solve the velocity for a falling parachutist. 

 

 

 



∑ 𝐹(𝑡) = 𝑚𝑎(𝑡) = 𝑚
𝑑𝑣(𝑡)

𝑑𝑡
. 

𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 + 𝐹𝑑𝑟𝑎𝑔 = 𝑚
𝑑𝑣(𝑡)

𝑑𝑡
 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑑𝑣(𝑡)

𝑑𝑡
=

𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 + 𝐹𝑑𝑟𝑎𝑔

𝑚
= 𝑔 −

𝑐𝑣(𝑡)

𝑚
 

 

 Rearrange it, we found that the mathematical model is in the form of first order linear 

nonhomogeneous Ordinary Differential Equation (ODE): 

1st order ODE format:  𝑎1(𝑡)𝑣′ + 𝑎0(𝑡)𝑣 = 𝑔(𝑡) 

Parachutist problem:  
𝑑𝑣(𝑡)

𝑑𝑡
+

𝑐

𝑚
(𝑣(𝑡)) = 𝑔 

Where, 

First parameter, 𝑎1(𝑡) = 1, 

Second parameter, 𝑎0(𝑡) =
𝑐

𝑚
, 

Forcing function, 𝑔(𝑡) = 𝑔, 

Independent variable = time, (𝑡) 

Dependent variable = velocity, 𝑣(𝑡) 

First derivative, ′ =
𝑑𝑣

𝑑𝑡
 . 

The classification of the order, linear vs nonlinear, homogeneous vs nonhomogeneous will be covered 

later.  

In general, a mathematical model can be broadly defined as a formulation or an equation that 

expresses the essential features of a physical system or process in mathematical terms. It can be 

represented as a functional relationship of the following form and explained in Table 12.1. 

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 𝑓(𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑓𝑜𝑟𝑐𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠) 

 

 

 

 

 

 



Table A1.1: Elements of mathematical model and its example of falling parachutist problem. 

Elements of mathematical model Example: Falling parachutist problem 

(i) Dependent variable  
-The characteristic that you are looking 

for, which reflects the behavior of the 

system 

 

The falling velocity, 𝑣(𝑡)  is the dependent 

variable that we are looking for. 

(ii) Independent variable 
-indicates the dimension of the examined 

system, such as time, space 

 

Time, (𝑡) is the independent variable or the 

dimension of the problem that we are working. 

(iii) Parameters 
-reflective of the system’s properties 

The parameters of this problem are the 

properties of the system such as the mass of 

parachutist & the parachute, (𝑚) and drag 

coefficient of air resistance, (𝑐). 

(iv) Forcing functions 
-external influences acting upon the 

system 

The acceleration due to gravity, (𝑔) is the 

forcing function in this problem. 

We need to solve the mathematical model (which is in differential equation such as  
𝑑𝑣(𝑡)

𝑑𝑡
+

𝑐

𝑚
𝑣(𝑡) = 𝑔)  to obtain the velocity function, 𝑣(𝑡). To do this, two main problem-solving tools can be 

implemented such as the analytical method and the numerical method. In this study, we will learn 

how to implement the analytical method (i.e. calculus & ODE) to solve the differential equation. The 

desired solution obtained by analytical method-1st order ODE is given as follows: 𝑣(𝑡) =
𝑔𝑚

𝑐
(1 −

𝑒−(𝑐 𝑚⁄ )𝑡).  

With this solution, it helps us to gain intuition about what to expect on the behaviour of the 

examined system. For example, what are the suitable mass and damping to reduce the impact 

velocity of the parachutist to the ground? This approach is known as the result interpretation and 

analysis. With an accurate mathematical model, we can predict the performance of the design 

without testing with the real subject. Avoiding the unnecessary physical cycles of ‘modify-and-test’ 

would save time and money.  

In addition, numerical method is used to solve a complicated mathematical model that can’t 

be solved by using analytical method. The desired solution obtained by numerical method- Euler 

method is given as follows: 𝑣(𝑡𝑖+1) = 𝑣(𝑡𝑖) + [𝑔 −
𝑐

𝑚
𝑣(𝑡𝑖)]( 𝑡𝑖+1 − 𝑡𝑖). This is for your extra 

information and you will learn the numerical method in advanced mathematic class. 

 

 

 



APPENDIX 1.2 CONSERVATION LAWS AND ENGINEERING 

When we employed the Newton’s law to develop a force balance equation for the falling parachutist, 

i.e.  
𝑑𝑣(𝑡)

𝑑𝑡
=

𝑚𝑔−𝑐𝑣(𝑡)

𝑚
, we can eventually boil down it to a simple equation: 

(i) Transient problem:                                [Change=increase-decrease] or [ 
𝑑𝑣(𝑡)

𝑑𝑡
≠ 0] 

 

Although simple, it embodies one of the most fundamental ways in which conservation laws 
are used in engineering – that is, to predict changes with respect to time. In this case, it is recognized 
as time-variant (or transient) problem. (For example, the falling velocity of the parachutist with 𝑚 =
68.1𝑘𝑔, 𝑐 = 12.5𝑘𝑔/𝑠  changes with respect to time is given in Figure A1.2 (a).)   

 

 Asides from predicting changes, another way in which conservation laws are applied is for 
cases where change is nonexistent. In this case, it is recognized as time-invariant (or steady state) 
problem (For example, we would like to know when will the falling velocity becomes constant, i.e. the 
terminal velocity). 

(ii) Steady state problem:                        [Change=increase-decrease=0] or [ 
𝑑𝑣(𝑡)

𝑑𝑡
= 0] 

 

For falling parachutist case, steady-state conditions would correspond to the case where 
𝑑𝑣(𝑡)

𝑑𝑡
=

𝑚𝑔−𝑐𝑣(𝑡)

𝑚
= 0. Figure A1.2 is plotted by using the solution, 𝑣(𝑡) =

𝑔𝑚

𝑐
(1 − 𝑒−(𝑐 𝑚⁄ )𝑡). From the 

Figure 1.2 below, it shows that the falling parachutist’s velocity keeps increasing and thus varies with 

time initially (transient case). When the velocity reaches to a point where the  𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 , (𝑚𝑔)  is equal 

to 𝐹𝑑𝑟𝑎𝑔, (𝑐𝑣), there is no more increase in velocity afterward due to 
𝑑𝑣(𝑡)

𝑑𝑡
= 0.   



 

Figure A1.2: (a) Transient and (b) steady state cases for falling parachutist problem. 

 

From Figure A1.2(b), the terminal velocity and terminal time can be computed as  𝑣𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 =
𝑔𝑚

𝑐
   and 𝑡𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 = −

𝑚

𝑐
ln |1 −

𝑐

𝑔𝑚
(𝑣𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)|. Note that velocity will increase when the first 

derivative, 
𝑑𝑣(𝑡)

𝑑𝑡
> 0 , decrease when 

𝑑𝑣(𝑡)

𝑑𝑡
< 0, and remain unchanged when 

𝑑𝑣(𝑡)

𝑑𝑡
= 0. 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX 1.3 HOMOGENEITY OF 1S T ORDER NON-LINEAR ODE 

(i) Homogeneous and non-homogeneous equations of  (
𝑑𝑦

𝑑𝑥
=

𝑓(𝑥,𝑦)

𝑔(𝑥,𝑦)
)  

 

This section is particular important especially when we deal with 1st order nonlinear ODE problem. It 
is worthwhile to mention that there is another method to classify the homogeneous and non-
homogeneous groups in ODE. For 1st order ODE equation, the classification is given below. 

First of all, the descriptions of the homogeneous and non-homogeneous functions are given: 

 

A homogeneous function  𝑓(𝑥, 𝑦) is said to be homogeneous of degree 𝑛, if we get 

𝑓(𝜆𝑥, 𝜆𝑦) = 𝜆𝑛𝑓(𝑥, 𝑦)  

for all arbitrary constant 𝜆. 

 

Non-homogeneous function is 

any function that does not follow the homogeneous format as equation above, i.e. 

𝑓(𝜆𝑥, 𝜆𝑦) ≠ 𝜆𝑛𝑓(𝑥, 𝑦) 

 

 

Example (1): Check the homogeneous degree for the function 𝑥4 + 𝑥𝑦3.  

In this case,  𝑓(𝑥, 𝑦) = 𝑥4 + 𝑥𝑦3. 

Applying 𝑓(𝜆𝑥, 𝜆𝑦), we get  𝑓(𝜆𝑥, 𝜆𝑦) = (𝜆𝑥)4 + (𝜆𝑥)(𝜆𝑦)3 = 𝜆4(𝜆 + 𝑥𝑦3) 

Since 𝑓(𝜆𝑥, 𝜆𝑦) = 𝜆𝑛𝑓(𝑥, 𝑦), thus we say the function  𝑥4 + 𝑥𝑦3  is homogeneous of degree, 𝑛 = 4 

(i.e. homogeneous function with degree 4) 

 

Example (2): Check the homogeneous degree for the function  𝑦2 − 𝑥𝑦 + 1.  

In this case, 𝑓(𝑥, 𝑦) =  𝑦2 − 𝑥𝑦 + 1. 

Applying 𝑓(𝜆𝑥, 𝜆𝑦), we get 𝑓(𝜆𝑥, 𝜆𝑦) =  (𝜆𝑦)2 − (𝜆𝑥)(𝜆𝑦) + 1.  

Since 𝑓(𝜆𝑥, 𝜆𝑦) ≠ 𝜆𝑛𝑓(𝑥, 𝑦)  or  (𝜆𝑦)2 − (𝜆𝑥)(𝜆𝑦) + 1 ≠ 𝜆2 (𝑦2 − 𝑥𝑦 + 1), thus we say the function 

 (𝑦)2 − (𝑥𝑦) + 1 is nonhomogeneous. 

Then, the homogeneous and nonhomogeneous differential equation of 1st order ODE are given: 

 



Case (1): Homogeneous differential equation of  
𝒅𝒚

𝒅𝒙
=

𝒇(𝒙,𝒚)

𝒈(𝒙,𝒚)
 

𝑑𝑦

𝑑𝑥
=

𝑓(𝑥,𝑦)

𝑔(𝑥,𝑦)
 is a homogeneous differential equation 

if 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦)  

are homogeneous of the same degree. 

For example: 

𝑑𝑦

𝑑𝑥
=

𝑦2−𝑥2

2𝑥𝑦
  

It is a 1st order nonlinear homogeneous differential equation where the functions at numerator (i.e. 

𝑦2 − 𝑥2) and denominator (i.e. 2𝑥𝑦) are homogeneous of degree 2. 

 

Case (2): Nonhomogeneous differential equation of  
𝒅𝒚

𝒅𝒙
=

𝒇(𝒙,𝒚)

𝒈(𝒙,𝒚)
 

𝑑𝑦

𝑑𝑥
=

𝑓(𝑥,𝑦)

𝑔(𝑥,𝑦)
 is a nonhomogeneous differential equation 

if 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) 

are nonhomogeneous or they have homogeneity with different degrees. 

For example [1]: 

𝑑𝑦

𝑑𝑥
=

2𝑥−4𝑦+5

𝑥−2𝑦+3
  

It is a 1st order nonlinear nonhomogeneous differential equation where the functions at numerator 

(i.e. 2𝑥 − 4𝑦 + 5) and denominator (i.e. 𝑥 − 2𝑦 + 3) are nonhomogeneous. 

 

For example [2]: 

𝑑𝑦

𝑑𝑥
=

𝑦2−𝑥2

2𝑥2𝑦2    

It is a 1st order nonlinear nonhomogeneous differential equation where the functions at numerator 

and denominator are homogeneous of degree 2 and degree 4 respectively. 

 

To avoid confusion, we use the term “homogeneous/nonhomogeneous” for all the linear ODE 

case, while we use the term “homogeneous/ nonhomogeneous of 
𝑑𝑦

𝑑𝑥
=

𝑓(𝑥,𝑦)

𝑔(𝑥,𝑦)
 form” for the 1st order 

nonlinear ODE case. The homogeneity of 2nd and higher order nonlinear ODE is out of scope in this 
study. 


