APPENDIX 12.1 SOLVE THE PDE LIKE ODE – EXTRA INFO

We can solve the PDE like the ODE when there is only one-independent-variable derivative in the equation. For example:

$$\frac{\partial^2}{\partial t^2} \{u(x,t)\} - u(x,t) = 0$$
$$\frac{\partial^2}{\partial x^2} \{u(x,t)\} - u(x,t) = 0$$
$$\frac{\partial^2}{\partial x^2} \{u(x,t)\} + \frac{\partial}{\partial x} \{u(x,t)\} - u(x,t) = 0$$

There are similarity and differences between the ODE and PDE. For example:

Case #1: 2 Distinct Real Roots	(Let dependent variable $= u$; independent variables $= x, t$)
--------------------------------	-------------------------------	------------------------------------

Solution for linear homogeneous ODE	Solution for linear homogeneous PDE
Solve $\frac{d^2}{dt^2} \{u(t)\} - u(t) = 0$	Solve $\frac{\partial^2}{\partial t^2} \{u(x,t)\} - u(x,t) = 0$
Let $u(t) = e^{rt}$	Let $u(x,t) = e^{rt}$
$r^2 e^{rt} - e^{rt} = 0$	$r^2 e^{rt} - e^{rt} = 0$
$(r^2 - 1)e^{rt} = 0$	$(r^2 - 1)e^{rt} = 0$
The solution $e^{rt} \neq 0$	The solution $e^{rt} \neq 0$
Hence, Characteristic equation: $(r^2 - 1) = 0$	Hence, Characteristic equation: $(r^2 - 1) = 0$
$r^{2} = 1$	$r^{2} = 1$
$r = \pm 1$	$r = \pm 1$
We have 2 independent solutions, i.e. e^t , e^{-t}	We have 2 independent solutions, i.e. e^t , e^{-t}
Using linear superposition:	Using linear superposition:
$\therefore u(t) = c_1 e^{-t} + c_2 e^t$	$\therefore u(x,t) = c_1(x)e^{-t} + c_2(x)e^t$
Boundary conditions: $u(0) = 1, u(1) = 0$	Boundary conditions: $u(x, 0) = x$, $u(x, 1) = 0$
$:: u(t) = 1.157e^{-t} - 0.157e^{t}$	$\therefore u(x,t) = (1.157x)e^{-t} - (0.157x)e^{t}$

Note: ODE has arbitrary constant (e.g. c_1) while PDE has arbitrary function (e.g. $c_1(x)$)

Solution for linear homogeneous ODE	Solution for linear homogeneous PDE
Solve $\frac{d^2}{dt^2} \{u(t)\} + u(t) = 0$	Solve $\frac{\partial^2}{\partial t^2} \{u(x,t)\} + u(x,t) = 0$
Let $u(t) = e^{rt}$	Let $u(x,t) = e^{rt}$
Hence, Characteristic equation: $(r^2 + 1) = 0$	Hence, Characteristic equation: $(r^2 + 1) = 0$
$r^{2} = -1$	$r^{2} = -1$
$r = \pm \sqrt{1} = \pm i$	$r = \pm \sqrt{1} = \pm i$
We have 2 independent solutions, i.e. e^{it} , e^{-it}	We have 2 independent solutions, i.e. e^{it} , e^{-it}
Using linear superposition:	Using linear superposition:
$\therefore u(t) = c_1 e^{-it} + c_2 e^{it}$	$\therefore u(x,t) = c_1(x)e^{-it} + c_2(x)e^{it}$
$= A_1 cost + A_2 sint$	$=A_1(x)cost + A_2(x)sint$

Case #2: 2 Distinct Complex Roots (Let dependent variable = u; independent variables = x, t)

Note: ODE has arbitrary constant (e.g. c_1) while PDE has arbitrary function (e.g. $c_1(x)$)

Case #3: 2 Identical Roots (L	et dependent variable $= u$; independent variables $= x, t$)
-------------------------------	-----------------------------	------------------------------------

Solution for linear homogeneous ODE	Solution for linear homogeneous PDE
Solve $\frac{d^2}{dt^2}$ { $u(t)$ } + 2 $\frac{d}{dt}$ { $u(t)$ } + $u(t) = 0$	Solve $\frac{\partial^2}{\partial t^2} \{u(x,t)\} + 2\frac{\partial}{\partial t} \{u(x,t)\} + u(x,t) =$
Let $u(t) = e^{rt}$	0
Characteristic equation: $(r^2 + 2r + 1) = 0$	Let $u(x,t) = e^{rt}$
(r+1)(r+1) = 0	Characteristic equation: $(r^2 + 2r + 1) = 0$
r = -1	(r+1)(r+1) = 0
We have 2 dependent solutions, i.e. e^{-t} , e^{-t}	r = -1
Treatment: Multiply its independent variable	We have 2 dependent solutions, i.e. e^{-t} , e^{-t}
New solutions: $e^{-t} t e^{-t}$	Treatment: Multiply its independent variable
Using linear supernosition:	New solutions: e^{-t} , te^{-t}
$\therefore u(t) = c_1 e^{-t} + c_2 t e^{-t}$	Using linear superposition:
	$\therefore u(x,t) = c_1(x)e^{-t} + c_2(x)te^{-t}$

Note: ODE has arbitrary constant (e.g. c_1) while PDE has arbitrary function (e.g. $c_1(x)$)

More examples:

Solve $u_{xx} - u = 0$, where u = u(x, y)

Solution:

Since u = u(x, y)Dependent variable: uIndependent variable: x, y

One-independent-variable derivative, i.e. x –derivative, where x as the variable while y as the constant, thus we can solve the PDE like ODE.

$$\begin{split} u_{xx} &= \frac{\partial^2}{\partial x^2} \{ u(x,y) \} \\ u_{xx} - u &= \frac{\partial^2}{\partial x^2} \{ u(x,y) \} - u(x,y) = 0 \\ \text{Similar to ODE, } u''(x) - u(x) &= 0 \text{ where } u(x) = e^{rx} \\ \text{Characteristic equation, } r^2 - 1 &= 0 \\ \text{2 real roots: } r_1 &= 1, r_2 = -1 \\ \text{Solution of PDE: } u(x,y) &= c_1(y)e^x + c_2(y)e^{-x} \text{ , where } c_1(y), c_2(y) \text{= arbitrary functions} \end{split}$$

Solve
$$u_{yy} - u = 0$$
, where $u = u(x, y)$

Solution:

Since u = u(x, y)Dependent variable: uIndependent variable: x, y

One-independent-variable derivative, i.e. y –derivative, where y as the variable while x as the constant, thus we can solve the PDE like ODE.

$$\begin{split} & u_{xx} = \frac{\partial^2}{\partial x^2} \{ u(x,y) \} \\ & u_{xx} - u = \frac{\partial^2}{\partial x^2} \{ u(x,y) \} - u(x,y) = 0 \\ & \text{Similar to ODE, } u''(y) - u(y) = 0, \text{ where } u(y) = e^{ry} \\ & \text{Characteristic equation, } r^2 - 1 = 0 \\ & \text{2 real roots: } r_1 = 1, r_2 = -1 \\ & \text{Solution of PDE: } u(x,y) = c_1(x)e^x + c_2(x)e^{-x} \text{ , where } c_1(x), c_2(x) = \text{arbitrary functions} \end{split}$$

Note that this approach can't solve the PDE problems if there are two-independent-variable derivative.

For example:

$$\frac{\partial^2}{\partial x \partial y} \{u(x,t)\} + \frac{\partial}{\partial x} \{u(x,t)\} - u(x,t) = 0$$
$$\frac{\partial^2}{\partial x^2} \{u(x,t)\} + \frac{\partial}{\partial y} \{u(x,t)\} - u(x,t) = 0$$

We can solve the PDE by direct integration when there is only one derivative component in the equation. For example:

$$\frac{\partial^2}{\partial t^2} \{u(x,t)\} = 5xe^{-10t}$$
$$\frac{\partial}{\partial t} \{u(x,t)\} = 5xe^{-10t}$$
$$\frac{\partial^2}{\partial t\partial x} \{u(x,t)\} = 5xe^{-10t}$$

• Using Direct integration on ODE vs PDE

Integration in ODE (Arbitrary Constants)	Integration in PDE (Arbitrary Functions)	
Solve $\frac{d^2}{dt^2}$ { $u(t)$ } = 0	Solve $\frac{\partial^2}{\partial t^2} \{u(x,t)\} = 0$	
Integrate both sides,	Integrate both sides,	
$\int \frac{d^2}{dt^2} \{u(t)\} dt = \int 0 dt$	$\int \frac{\partial^2}{\partial t^2} \{ u(x,t) \} dt = \int 0 dt$	
$\frac{d}{dt}\{u(t)\} = 0t + c_1$	$\frac{\partial}{\partial t}\{u(x,t)\} = 0t + c_1(x)$	
Integrate both sides again,	Integrate both sides again,	
$\int \frac{d}{dt} \{u(t)\} dt = \int c_1 dt$	$\int \frac{\partial}{\partial t} \{ u(x,t) \} dt = \int c_1(x) dt$	
$\therefore u(t) = c_1 t + c_2$	$\therefore u(x,t) = c_1(x)t + c_2(x)$	
Where c_1 and c_2 are 2 arbitrary constants. These constants can be solved if 2 initial conditions or boundary conditions are provided.	Where $c_1(x)$ and $c_2(x)$ are 2 arbitrary functions of variable x . These functions can be solved if the initial conditions or boundary conditions are provided.	
<i>Note</i> : n th order ODE will have n constants to be solved. (e.g. 2 nd order ODE have 2 arbitrary constants)	Note : n^{th} order PDE may need more than n arbitrary functions to be solved	

• More examples:

Solve
$$\frac{\partial^2}{\partial x \partial y} \{u(x, y)\} = 0$$

Solution for linear homogeneous PDE

Integrate both sides with respect to variable x, $\int \frac{\partial^2}{\partial x \partial y} \{u(x, y)\} dx = \int 0 dx$ $\frac{\partial}{\partial y} \{u(x, y)\} = 0x + c_1(y)$ Integrate both sides with respect to variable y, $\int \frac{\partial}{\partial y} \{u(x, y)\} dy = \int c_1(y) dy$ $\therefore u(x, y) = \int c_1(y) dy$ where $c_1(y)$ is the arbitrary function of variable y.

Solve
$$u_{xx} = 6xe^{-t}$$
 where $u_{xx} = \frac{\partial^2}{\partial x^2} \{u(x,t)\}$; BC: $u(0,t) = t$ and $u_x(0,t) = e^{-t}$

Solution:

- Dependent variable: *u*
- Independent variable: *x*, *t*

$$u_{xx} = \frac{\partial^2}{\partial x^2} \{ u(x,t) \} = 6xe^{-t}$$

Note: One derivative component $\frac{\partial^2}{\partial x^2}$ and thus we can use direct integration

• Integrate the PDE with respect to variable x (Hence, variable t is constant)

$$\frac{\partial}{\partial x} \{u(x,t)\} = \int \frac{\partial^2}{\partial x^2} \{u(x,t)\} dx = \int 6xe^{-t} dx$$

$$\frac{\partial}{\partial x} \{u(x,t)\} = \underbrace{\frac{\partial}{\partial x}e^{-t}}_{\substack{\text{treated as constant} \\ \text{when we integrated} \\ \text{wrt the variable } x}}_{\substack{\text{treated as constant} \\ \text{wrt the variable } x}} \int x dx = 6e^{-t} \frac{x^2}{2} + c_1(t)$$

• Integrate the PDE with respect to variable x (Hence, variable t is constant)

$$\int \frac{\partial}{\partial x} \{u(x,t)\} dx = \int 3e^{-t} x^2 + c_1(t) dx$$

General PDE solution: $u(x,t) = e^{-t}x^3 + xc_1(t) + c_2(t)$,

where the unknown arbitrary functions are $c_1(t) \& c_2(t)$.

Next, we continue to apply the boundary condition to solve the particular PDE solution.

u(0,t) = tFor x = 0: $u(x,t) = e^{-t}(0) + (0)c_1(t) + c_2(t) = t$ $\therefore c_2(t) = t$ $u_x(x,t) = \frac{\partial}{\partial x} [e^{-t}x^3 + xc_1(t) + c_2(t)] = 3e^{-t}x^2 + c_1(t)$ $u_x(0,t) = e^{-t}$ For x = 0: $u_x(x,t) = 3e^{-t}(0) + c_1(t) = e^{-t}$ $\therefore c_1(t) = e^{-t}$ Particular PDE solution: $u(x,t) = e^{-t}x^3 + xe^{-t} + t$ Solve $u_{xy} = sinxcosy$ where the boundary conditions are given:

When
$$y = \frac{\pi}{2}$$
, $u_x = 2x$

When $x = \pi$, u = 2siny

Solution:

- Dependent variable: u
- Independent variable: *x* & *y*

 $u_{xy} = \frac{\partial^2}{\partial x \partial y} \{u(x, y)\} = sinxcosy$ Note: One derivative component $\frac{\partial^2}{\partial x \partial y}$ and thus we can use direct integration

• Integrate the PDE with respect to variable y (Hence, variable x is constant)

$$\int \frac{\partial}{\partial x \partial y} \{u(x, y)\} dy = \int sinxcosydy$$
$$\frac{\partial}{\partial x} \{u(x, y)\} = sinx \int cosydy = sinxsiny + c_1(x)$$

• Integrate the PDE with respect to variable x (Hence, variable y is constant) $\int \frac{\partial}{\partial x} \{u(x, y)\} dx = \int sinxsiny + c_1(x) dx$

General PDE solution: $u(x, y) = -cosxsiny + \int c_1(x)dx + c_2(y)$

where the unknown arbitrary functions are $c_1(x) \& c_2(y)$.

Next, we continue to apply the boundary condition to solve the particular PDE solution.

$$u(\pi, y) = 2siny$$
For $x = \pi$: $u(x, y) = -cos\pi siny + \int c_1(x)dx + c_2(y) = 2siny$
 $\int c_1(x)dx + c_2(y) = siny$
 $\therefore c_2(y) = siny - \int c_1(x)dx$ (Note: $c_2(y)$ has unknown $c_1(x)$ to be solved)
$$u_x(x, y) = \frac{\partial}{\partial x} [-cosxsiny + \int c_1(x)dx + c_2(y)] = sinxsiny + c_1(x)$$
 $u_x\left(x, \frac{\pi}{2}\right) = 2x$
For $y = \frac{\pi}{2}$: $u_x(x, y) = sinxsin\frac{\pi}{2} + c_1(x) = 2x$
 $\therefore c_1(x) = 2x - sinx$
Note: $c_1(x)$ is expressed in the variable x only
Substitute $c_1(x)$ into $c_2(y)$ equation where $u(\pi, y) = 2siny$
 $c_2(y) = siny - \int 2x - sinxdx$
 $= siny - (x^2 + cosx)$
 $= siny + 1 - \pi^2$
Note: $c_2(y)$ is expressed in the variable y only
Particular PDE solution: $u(x, y) = -cosxsiny + \int 2x - sinxdx + siny + 1 - \pi^2$

APPENDIX 12.3 SOLVE THE PDE BY REDUCTION OF ORDER METHOD- EXTRA INFO

We can solve the PDE by reduction of order method when the order can be reduced by proper substitution.

For example:

$$\frac{\partial^2}{\partial x^2} \{ u(x,t) \} + \frac{\partial}{\partial x} \{ u(x,t) \} = 0$$

Order can be reduced by let $p(x,t) = \frac{\partial}{\partial x} \{u(x,t)\}$

$$\rightarrow \frac{\partial}{\partial x} \{ p(x,t) \} + p(x,t) = 0$$

$$\frac{\partial^2}{\partial x \partial y} \{ u(x, y) \} + \frac{\partial}{\partial x} \{ u(x, y) \} = 0$$

Order can be reduced by let $g(x, y) = \frac{\partial}{\partial x} \{u(x, y)\}$

$$\rightarrow \frac{\partial}{\partial y} \{g(x, y)\} + g(x, y) = 0$$

Hence, we can solve the problem by using the integration, solve PDE like ode approach, etc.

For example, repeating the problem in Appendix 12.2: Solve $u_{xx} = 6xe^{-t}$ where $u_{xx} = \frac{\partial^2}{\partial x^2} \{u(x,t)\}$; BC: u(0,t) = t and $u_x(0,t) = e^{-t}$

Order can be reduced by let
$$p(x,t) = \frac{\partial}{\partial x} \{u(x,t)\}$$

 $u_{xx} = \frac{\partial^2}{\partial x^2} \{u(x,t)\} = 6xe^{-t} = \frac{\partial}{\partial x} \{p(x,t)\}$
• Integrate the PDE with respect to variable x (Hence, variable t is constant)
 $\int \frac{\partial}{\partial x} \{p(x,t)\} dx = \int 6xe^{-t} dx$
 $p(x,t) = 6e^{-t} \int x dx = 6e^{-t} \frac{x^2}{2} + c_1(t)$
• Back substitution the $p(x,t) = \frac{\partial}{\partial x} \{u(x,t)\}$. Hence, Integrate the PDE with respect to variable x
(Note: variable t is constant in this case)

$$\int \frac{\partial}{\partial x} \{u(x,t)\} dx = \int 3e^{-t} x^2 + c_1(t) dx$$

$$\therefore u(x,t) = e^{-t} x^3 + x c_1(t) + c_2(t)$$