
APPENDIX 12.1 SOLVE THE PDE LIKE ODE – EXTRA INFO 

We can solve the PDE like the ODE when there is only one-independent-variable derivative in the 

equation. For example:  

𝜕2

𝜕𝑡2
{𝑢(𝑥, 𝑡)} − 𝑢(𝑥, 𝑡) = 0  

𝜕2

𝜕𝑥2
{𝑢(𝑥, 𝑡)} − 𝑢(𝑥, 𝑡) = 0  

𝜕2

𝜕𝑥2
{𝑢(𝑥, 𝑡)} +

𝜕

𝜕𝑥
{𝑢(𝑥, 𝑡)} − 𝑢(𝑥, 𝑡) = 0  

 

There are similarity and differences between the ODE and PDE. For example: 

Case #1: 2 Distinct Real Roots (Let dependent variable = 𝑢  ; independent variables= 𝑥, 𝑡 ) 

Solution for linear homogeneous ODE Solution for linear homogeneous PDE 

Solve 
𝑑2

𝑑𝑡2
{𝑢(𝑡)} − 𝑢(𝑡) = 0 

𝐿𝑒𝑡 𝑢(𝑡) = 𝑒𝑟𝑡 

𝑟2𝑒𝑟𝑡 − 𝑒𝑟𝑡 = 0 

(𝑟2 − 1)𝑒𝑟𝑡 = 0 

The solution 𝑒𝑟𝑡 ≠ 0 

Hence, Characteristic equation: (𝑟2 − 1) = 0 

𝑟2 = 1 

𝑟 = ±1 

We have 2 independent solutions, i.e. 𝑒𝑡, 𝑒−𝑡 

Using linear superposition: 

∴ 𝑢(𝑡) = 𝑐1𝑒
−𝑡 + 𝑐2𝑒

𝑡 

Boundary conditions: 𝑢(0) = 1, 𝑢(1) = 0 

∴ 𝑢(𝑡) = 1.157𝑒−𝑡 − 0.157𝑒𝑡 

Solve 
𝜕2

𝜕𝑡2
{𝑢(𝑥, 𝑡)} − 𝑢(𝑥, 𝑡) = 0 

𝐿𝑒𝑡 𝑢(𝑥, 𝑡) = 𝑒𝑟𝑡 

𝑟2𝑒𝑟𝑡 − 𝑒𝑟𝑡 = 0 

(𝑟2 − 1)𝑒𝑟𝑡 = 0 

The solution 𝑒𝑟𝑡 ≠ 0 

Hence, Characteristic equation: (𝑟2 − 1) = 0 

𝑟2 = 1 

𝑟 = ±1 

We have 2 independent solutions, i.e. 𝑒𝑡, 𝑒−𝑡 

Using linear superposition: 

∴ 𝑢(𝑥, 𝑡) = 𝑐1(𝑥)𝑒
−𝑡 + 𝑐2(𝑥)𝑒

𝑡 

Boundary conditions: 𝑢(𝑥, 0) = 𝑥, 𝑢(𝑥, 1) = 0 

∴ 𝑢(𝑥, 𝑡) = (1.157𝑥)𝑒−𝑡 − (0.157𝑥)𝑒𝑡 

Note: ODE has arbitrary constant (e.g. 𝑐1) while PDE has arbitrary function (e.g. 𝑐1(x))  

 

 

 

 

 

 

 



Case #2: 2 Distinct Complex Roots (Let dependent variable = 𝑢  ; independent variables= 𝑥, 𝑡 ) 

Solution for linear homogeneous ODE Solution for linear homogeneous PDE 

Solve 
𝑑2

𝑑𝑡2
{𝑢(𝑡)} + 𝑢(𝑡) = 0 

𝐿𝑒𝑡 𝑢(𝑡) = 𝑒𝑟𝑡 

Hence, Characteristic equation: (𝑟2 + 1) = 0 

𝑟2 = −1 

𝑟 = ±√1 = ±𝑖 

We have 2 independent solutions, i.e. 𝑒𝑖𝑡 , 𝑒−𝑖𝑡 

Using linear superposition: 

∴ 𝑢(𝑡) = 𝑐1𝑒
−𝑖𝑡 + 𝑐2𝑒

𝑖𝑡 

                 = 𝐴1𝑐𝑜𝑠𝑡 + 𝐴2𝑠𝑖𝑛𝑡 

Solve 
𝜕2

𝜕𝑡2
{𝑢(𝑥, 𝑡)} + 𝑢(𝑥, 𝑡) = 0 

𝐿𝑒𝑡 𝑢(𝑥, 𝑡) = 𝑒𝑟𝑡 

Hence, Characteristic equation: (𝑟2 + 1) = 0 

𝑟2 = −1 

𝑟 = ±√1 = ±𝑖 

We have 2 independent solutions, i.e. 𝑒𝑖𝑡 , 𝑒−𝑖𝑡 

Using linear superposition: 

∴ 𝑢(𝑥, 𝑡) = 𝑐1(𝑥)𝑒
−𝑖𝑡 + 𝑐2(𝑥)𝑒

𝑖𝑡 

                      = 𝐴1(𝑥)𝑐𝑜𝑠𝑡 + 𝐴2(𝑥)𝑠𝑖𝑛𝑡 

Note: ODE has arbitrary constant (e.g. 𝑐1) while PDE has arbitrary function (e.g. 𝑐1(𝑥))  

 

Case #3: 2 Identical Roots (Let dependent variable = 𝑢  ; independent variables= 𝑥, 𝑡 ) 

Solution for linear homogeneous ODE Solution for linear homogeneous PDE 

Solve 
𝑑2

𝑑𝑡2
{𝑢(𝑡)} + 2

𝑑

𝑑𝑡
{𝑢(𝑡)} + 𝑢(𝑡) = 0 

𝐿𝑒𝑡 𝑢(𝑡) = 𝑒𝑟𝑡 

Characteristic equation: (𝑟2 + 2𝑟 + 1) = 0 

(𝑟 + 1)(𝑟 + 1) = 0 

𝑟 = −1 

We have 2 dependent solutions, i.e. 𝑒−𝑡, 𝑒−𝑡 

Treatment: Multiply its independent variable 

New solutions: 𝑒−𝑡, 𝑡𝑒−𝑡 

Using linear superposition: 

∴ 𝑢(𝑡) = 𝑐1𝑒
−𝑡 + 𝑐2𝑡𝑒

−𝑡 

                  

Solve 
𝜕2

𝜕𝑡2
{𝑢(𝑥, 𝑡)} + 2

𝜕

𝜕𝑡
{𝑢(𝑥, 𝑡)} + 𝑢(𝑥, 𝑡) =

0 

𝐿𝑒𝑡 𝑢(𝑥, 𝑡) = 𝑒𝑟𝑡 

Characteristic equation: (𝑟2 + 2𝑟 + 1) = 0 

(𝑟 + 1)(𝑟 + 1) = 0 

𝑟 = −1 

We have 2 dependent solutions, i.e. 𝑒−𝑡, 𝑒−𝑡 

Treatment: Multiply its independent variable 

New solutions: 𝑒−𝑡, 𝑡𝑒−𝑡 

Using linear superposition: 

∴ 𝑢(𝑥, 𝑡) = 𝑐1(𝑥)𝑒
−𝑡 + 𝑐2(𝑥)𝑡𝑒

−𝑡 

Note: ODE has arbitrary constant (e.g. 𝑐1) while PDE has arbitrary function (e.g. 𝑐1(𝑥))  

 

 

 



More examples: 

Solve 𝑢𝑥𝑥 − 𝑢 = 0,  where 𝑢 = 𝑢(𝑥, 𝑦) 

Solution: 

Since 𝑢 = 𝑢(𝑥, 𝑦) 
Dependent variable: 𝑢 
Independent variable: 𝑥, 𝑦 
 

One-independent-variable derivative, i.e. 𝑥 –derivative, where 𝑥  as the variable while 𝑦  as the 
constant, thus we can solve the PDE like ODE. 
 

𝑢𝑥𝑥 =
𝜕2

𝜕𝑥2
{𝑢(𝑥, 𝑦)}  

𝑢𝑥𝑥 − 𝑢 =
𝜕2

𝜕𝑥2
{𝑢(𝑥, 𝑦)} − 𝑢(𝑥, 𝑦) = 0  

 
Similar to ODE, 𝑢′′(𝑥) − 𝑢(𝑥) = 0 where 𝑢(𝑥) = 𝑒𝑟𝑥 
Characteristic equation, 𝑟2 − 1 = 0  
2 real roots: 𝑟1 = 1 , 𝑟2 = −1  
Solution of PDE:  𝑢(𝑥, 𝑦) = 𝑐1(𝑦)𝑒

𝑥 + 𝑐2(𝑦)𝑒
−𝑥  , where 𝑐1(𝑦), 𝑐2(𝑦)= arbitrary functions 

 

 

Solve 𝑢𝑦𝑦 − 𝑢 = 0,  where 𝑢 = 𝑢(𝑥, 𝑦) 

Solution: 

Since 𝑢 = 𝑢(𝑥, 𝑦) 
Dependent variable: 𝑢 
Independent variable: 𝑥, 𝑦 
 

One-independent-variable derivative, i.e. 𝑦 –derivative, where 𝑦  as the variable while 𝑥  as the 
constant, thus we can solve the PDE like ODE. 
 

𝑢𝑥𝑥 =
𝜕2

𝜕𝑥2
{𝑢(𝑥, 𝑦)}  

𝑢𝑥𝑥 − 𝑢 =
𝜕2

𝜕𝑥2
{𝑢(𝑥, 𝑦)} − 𝑢(𝑥, 𝑦) = 0  

 
Similar to ODE, 𝑢′′(𝑦) − 𝑢(𝑦) = 0, where 𝑢(𝑦) = 𝑒𝑟𝑦 
Characteristic equation, 𝑟2 − 1 = 0  
2 real roots: 𝑟1 = 1 , 𝑟2 = −1  
Solution of PDE:  𝑢(𝑥, 𝑦) = 𝑐1(𝑥)𝑒

𝑥 + 𝑐2(𝑥)𝑒
−𝑥  , where 𝑐1(𝑥), 𝑐2(𝑥)= arbitrary functions 

 

 

Note that this approach can’t solve the PDE problems if there are two-independent-variable derivative.  

For example: 

 
𝜕2

𝜕𝑥𝜕𝑦
{𝑢(𝑥, 𝑡)} +

𝜕

𝜕𝑥
{𝑢(𝑥, 𝑡)} − 𝑢(𝑥, 𝑡) = 0 

𝜕2

𝜕𝑥2
{𝑢(𝑥, 𝑡)} +

𝜕

𝜕𝑦
{𝑢(𝑥, 𝑡)} − 𝑢(𝑥, 𝑡) = 0  



APPENDIX 12.2 SOLVE THE PDE BY DIRECT INTEGRATION– EXTRA INFO 

We can solve the PDE by direct integration when there is only one derivative component in the 

equation. For example:  

𝜕2

𝜕𝑡2
{𝑢(𝑥, 𝑡)} = 5𝑥𝑒−10𝑡  

𝜕

𝜕𝑡
{𝑢(𝑥, 𝑡)} = 5𝑥𝑒−10𝑡  

𝜕2

𝜕𝑡𝜕𝑥
{𝑢(𝑥, 𝑡)} = 5𝑥𝑒−10𝑡  

 

 Using Direct integration on ODE vs PDE 

Integration in ODE (Arbitrary Constants) Integration in PDE (Arbitrary Functions) 

Solve 
𝑑2

𝑑𝑡2
{𝑢(𝑡)} = 0 

Integrate both sides, 

∫
𝑑2

𝑑𝑡2
{𝑢(𝑡)}𝑑𝑡 = ∫0𝑑𝑡  

𝑑

𝑑𝑡
{𝑢(𝑡)} = 0𝑡 + 𝑐1 

Integrate both sides again, 

∫
𝑑

𝑑𝑡
{𝑢(𝑡)}𝑑𝑡 = ∫ 𝑐1𝑑𝑡  

∴ 𝑢(𝑡) = 𝑐1𝑡 + 𝑐2 

Where 𝑐1 and 𝑐2 are 2 arbitrary constants. 

These constants can be solved if 2 initial 

conditions or boundary conditions are 

provided. 

𝑵𝒐𝒕𝒆: 𝑛th order ODE will have 𝑛 constants to 

be solved. (e.g. 2nd order ODE have 2 arbitrary 

constants)  

Solve 
𝜕2

𝜕𝑡2
{𝑢(𝑥, 𝑡)} = 0 

Integrate both sides, 

∫
𝜕2

𝜕𝑡2
{𝑢(𝑥, 𝑡)}𝑑𝑡 = ∫0𝑑𝑡  

𝜕

𝜕𝑡
{𝑢(𝑥, 𝑡)} = 0𝑡 + 𝑐1(𝑥) 

Integrate both sides again, 

∫
𝜕

𝜕𝑡
{𝑢(𝑥, 𝑡)}𝑑𝑡 = ∫ 𝑐1(𝑥)𝑑𝑡  

∴ 𝑢(𝑥, 𝑡) = 𝑐1(𝑥)𝑡 + 𝑐2(𝑥) 

Where 𝑐1(𝑥)and 𝑐2(𝑥)are 2 arbitrary functions 

of variable 𝑥. These functions can be solved if 

the initial conditions or boundary conditions 

are provided. 

𝑵𝒐𝒕𝒆: 𝑛 th order PDE may need more than  𝑛 
arbitrary functions to be solved 

 

 More examples: 

  Solve 
𝜕2

𝜕𝑥𝜕𝑦
{𝑢(𝑥, 𝑦)} = 0 

Solution for linear homogeneous PDE 

Integrate both sides with respect to variable 𝑥, 

∫
𝜕2

𝜕𝑥𝜕𝑦
{𝑢(𝑥, 𝑦)}𝑑𝑥 = ∫0𝑑𝑥  

𝜕

𝜕𝑦
{𝑢(𝑥, 𝑦)} = 0𝑥 + 𝑐1(𝑦)  

 



Integrate both sides with respect to variable 𝑦, 

∫
𝜕

𝜕𝑦
{𝑢(𝑥, 𝑦)}𝑑𝑦 = ∫ 𝑐1(𝑦)𝑑𝑦  

∴ 𝑢(𝑥, 𝑦) = ∫ 𝑐1(𝑦)𝑑𝑦  

where 𝑐1(𝑦) is the arbitrary function of variable 𝑦.  

 

Solve 𝑢𝑥𝑥 = 6𝑥𝑒
−𝑡  where 𝑢𝑥𝑥 =

𝜕2

𝜕𝑥2
{𝑢(𝑥, 𝑡)}  ;  BC: 𝑢(0, 𝑡) = 𝑡 and 𝑢𝑥(0, 𝑡) = 𝑒

−𝑡 

 

Solution: 

• Dependent variable: 𝑢 

• Independent variable: 𝑥, 𝑡 
 

𝑢𝑥𝑥 =
𝜕2

𝜕𝑥2
{𝑢(𝑥, 𝑡)} = 6𝑥𝑒−𝑡 

Note: One derivative component 
𝜕2

𝜕𝑥2
 and thus we can use direct integration 

 
• Integrate the PDE with respect to variable 𝑥 (Hence, variable 𝑡 is constant) 

∫
𝜕2

𝜕𝑥2
{𝑢(𝑥, 𝑡)}𝑑𝑥 = ∫6𝑥𝑒−𝑡𝑑𝑥 

𝜕

𝜕𝑥
{𝑢(𝑥, 𝑡)} = 6𝑒−𝑡⏟

𝑡𝑟𝑒𝑎𝑡𝑒𝑑𝑎𝑠𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑤ℎ𝑒𝑛𝑤𝑒𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑
𝑤𝑟𝑡𝑡ℎ𝑒𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑥

∫𝑥𝑑𝑥 = 6𝑒−𝑡
𝑥2

2
+ 𝑐1(𝑡) 

 
• Integrate the PDE with respect to variable 𝑥 (Hence, variable 𝑡 is constant) 

∫
𝜕

𝜕𝑥
{𝑢(𝑥, 𝑡)}𝑑𝑥 = ∫3𝑒−𝑡𝑥2 + 𝑐1(𝑡) 𝑑𝑥 

 
      General PDE solution:  𝑢(𝑥, 𝑡) = 𝑒−𝑡𝑥3 + 𝑥𝑐1(𝑡) + 𝑐2(𝑡)  , 

 
where the unknown arbitrary functions are 𝑐1(𝑡) & 𝑐2(𝑡).  

 
Next, we continue to apply the boundary condition to solve the particular PDE solution. 
 
𝑢(0, 𝑡) = 𝑡 

For 𝒙 = 𝟎:  𝑢(𝑥, 𝑡) = 𝑒−𝑡(0) + (0)𝑐1(𝑡) + 𝑐2(𝑡) = 𝑡  

∴ 𝑐2(𝑡) = 𝑡   
 

𝑢𝑥(𝑥, 𝑡) =
𝜕

𝜕𝑥
[𝑒−𝑡𝑥3 + 𝑥𝑐1(𝑡) + 𝑐2(𝑡)] = 3𝑒

−𝑡𝑥2 + 𝑐1(𝑡) 

𝑢𝑥(0, 𝑡) = 𝑒
−𝑡 

For 𝒙 = 𝟎:  𝑢𝑥(𝑥, 𝑡) = 3𝑒
−𝑡(0) + 𝑐1(𝑡) = 𝑒

−𝑡 

               ∴ 𝑐1(𝑡) = 𝑒
−𝑡 

 

Particular PDE solution:   𝑢(𝑥, 𝑡) = 𝑒−𝑡𝑥3 + 𝑥𝑒−𝑡 + 𝑡 
 

 

 

 

 



Solve 𝑢𝑥𝑦 = 𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑦  where the boundary conditions are given: 

When 𝑦 =
𝜋

2
, 𝑢𝑥 = 2𝑥 

When 𝑥 = 𝜋, 𝑢 = 2𝑠𝑖𝑛𝑦 

 

Solution: 
• Dependent variable: 𝑢 

• Independent variable: 𝑥 & 𝑦 
 

𝑢𝑥𝑦 =
𝜕2

𝜕𝑥𝜕𝑦
{𝑢(𝑥, 𝑦)} = 𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑦   

Note: One derivative component 
𝜕2

𝜕𝑥𝜕𝑦
 and thus we can use direct integration 

 
• Integrate the PDE with respect to variable 𝑦 (Hence, variable 𝑥 is constant) 

∫
𝜕2

𝜕𝑥𝜕𝑦
{𝑢(𝑥, 𝑦)}𝑑𝑦 = ∫ 𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑦𝑑𝑦  

𝜕

𝜕𝑥
{𝑢(𝑥, 𝑦)} = 𝑠𝑖𝑛𝑥 ∫ 𝑐𝑜𝑠𝑦𝑑𝑦 = 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦 + 𝑐1(𝑥)  

 
• Integrate the PDE with respect to variable 𝑥 (Hence, variable 𝑦 is constant) 

∫
𝜕

𝜕𝑥
{𝑢(𝑥, 𝑦)}𝑑𝑥 = ∫ 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦 + 𝑐1(𝑥)𝑑𝑥  

 
General PDE solution: 𝑢(𝑥, 𝑦) = −𝑐𝑜𝑠𝑥𝑠𝑖𝑛𝑦 + ∫ 𝑐1(𝑥)𝑑𝑥 + 𝑐2(𝑦)   
 
where the unknown arbitrary functions are 𝑐1(𝑥) & 𝑐2(𝑦).  

 
Next, we continue to apply the boundary condition to solve the particular PDE solution. 
 
𝑢(𝜋, 𝑦) = 2𝑠𝑖𝑛𝑦 

For 𝒙 = 𝝅:  𝑢(𝑥, 𝑦) = −𝑐𝑜𝑠𝜋𝑠𝑖𝑛𝑦 + ∫ 𝑐1(𝑥)𝑑𝑥 + 𝑐2(𝑦) = 2𝑠𝑖𝑛𝑦 

∫ 𝑐1(𝑥)𝑑𝑥 + 𝑐2(𝑦) = 𝑠𝑖𝑛𝑦  

∴ 𝑐2(𝑦) = 𝑠𝑖𝑛𝑦 − ∫𝑐1(𝑥)𝑑𝑥        (Note: 𝑐2(𝑦) has unknown 𝑐1(𝑥) to be solved) 
 

𝑢𝑥(𝑥, 𝑦) =
𝜕

𝜕𝑥
[−𝑐𝑜𝑠𝑥𝑠𝑖𝑛𝑦 + ∫ 𝑐1(𝑥)𝑑𝑥 + 𝑐2(𝑦)] = 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦 + 𝑐1(𝑥)  

𝑢𝑥 (𝑥,
𝜋

2
) = 2𝑥  

For 𝒚 =
𝝅

𝟐
:  𝑢𝑥(𝑥, 𝑦) = 𝑠𝑖𝑛𝑥𝑠𝑖𝑛

𝝅

𝟐
+ 𝑐1(𝑥) = 2𝑥 

∴ 𝑐1(𝑥) = 2𝑥 − 𝑠𝑖𝑛𝑥 
 
Note: 𝑐1(𝑥) is expressed in the variable 𝑥 only 
Substitute 𝑐1(𝑥) into 𝑐2(𝑦) equation where 𝑢(𝜋, 𝑦) = 2𝑠𝑖𝑛𝑦 
 
𝑐2(𝑦) = 𝑠𝑖𝑛𝑦 − ∫2𝑥 − 𝑠𝑖𝑛𝑥𝑑𝑥  
            = 𝑠𝑖𝑛𝑦 − (𝑥2 + 𝑐𝑜𝑠𝑥) 

= 𝑠𝑖𝑛𝑦 − (𝜋2 + 𝑐𝑜𝑠𝜋)          
= 𝑠𝑖𝑛𝑦 + 1 − 𝜋2            

Note: 𝑐2(𝑦) is expressed in the variable 𝑦 only 
 

Particular PDE solution:   𝑢(𝑥, 𝑦) = −𝑐𝑜𝑠𝑥𝑠𝑖𝑛𝑦 + ∫2𝑥 − 𝑠𝑖𝑛𝑥𝑑𝑥 + 𝑠𝑖𝑛𝑦 + 1 − 𝜋2   
                                                             = −𝑐𝑜𝑠𝑥𝑠𝑖𝑛𝑦 + 𝑥2 + 𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛𝑦 + 1 − 𝜋2 



 

APPENDIX 12.3 SOLVE THE PDE BY REDUCTION OF ORDER METHOD– EXTRA INFO 

We can solve the PDE by reduction of order method when the order can be reduced by proper 

substitution.  

 

For example: 

𝜕2

𝜕𝑥2
{𝑢(𝑥, 𝑡)} +

𝜕

𝜕𝑥
{𝑢(𝑥, 𝑡)} = 0 

Order can be reduced by let  𝑝(𝑥, 𝑡) =
𝜕

𝜕𝑥
{𝑢(𝑥, 𝑡)} 

→
𝜕

𝜕𝑥
{𝑝(𝑥, 𝑡)} + 𝑝(𝑥, 𝑡) = 0 

 

𝜕2

𝜕𝑥𝜕𝑦
{𝑢(𝑥, 𝑦)} +

𝜕

𝜕𝑥
{𝑢(𝑥, 𝑦)} = 0 

Order can be reduced by let  𝑔(𝑥, 𝑦) =
𝜕

𝜕𝑥
{𝑢(𝑥, 𝑦)} 

→
𝜕

𝜕𝑦
{𝑔(𝑥, 𝑦)} + 𝑔(𝑥, 𝑦) = 0 

 

Hence, we can solve the problem by using the integration, solve PDE like ode approach, etc.  

 

For example, repeating the problem in Appendix 12.2: 

Solve 𝑢𝑥𝑥 = 6𝑥𝑒
−𝑡  where 𝑢𝑥𝑥 =

𝜕2

𝜕𝑥2
{𝑢(𝑥, 𝑡)}  ;  BC: 𝑢(0, 𝑡) = 𝑡 and 𝑢𝑥(0, 𝑡) = 𝑒

−𝑡 

 

Order can be reduced by let 𝑝(𝑥, 𝑡) =
𝜕

𝜕𝑥
{𝑢(𝑥, 𝑡)} 

𝑢𝑥𝑥 =
𝜕2

𝜕𝑥2
{𝑢(𝑥, 𝑡)} = 6𝑥𝑒−𝑡 =

𝜕

𝜕𝑥
{𝑝(𝑥, 𝑡)}  

  

• Integrate the PDE with respect to variable 𝑥 (Hence, variable 𝑡 is constant) 

∫
𝜕

𝜕𝑥
{𝑝(𝑥, 𝑡)}𝑑𝑥 = ∫6𝑥𝑒−𝑡𝑑𝑥  

𝑝(𝑥, 𝑡) = 6𝑒−𝑡 ∫𝑥𝑑𝑥 = 6𝑒−𝑡
𝑥2

2
+ 𝑐1(𝑡)   

 

• Back substitution the 𝑝(𝑥, 𝑡) =
𝜕

𝜕𝑥
{𝑢(𝑥, 𝑡)}. Hence, Integrate the PDE with respect to variable 𝑥 

(Note: variable 𝑡 is constant in this case) 
 

∫
𝜕

𝜕𝑥
{𝑢(𝑥, 𝑡)}𝑑𝑥 = ∫3𝑒−𝑡𝑥2 + 𝑐1(𝑡) 𝑑𝑥  

∴ 𝑢(𝑥, 𝑡) = 𝑒−𝑡𝑥3 + 𝑥𝑐1(𝑡) + 𝑐2(𝑡) 
 

 

 

 

 


