
FIRST ORDER DIFFERENTIAL EQUATIONS 
WEEK 1: FIRST ORDER DIFFERENTIAL EQUATIONS 

1.1 Introduction to differential equation  

If we want to solve an engineering problem (usually of a physical nature), we first have to formulate 

the problem as a mathematical expression in terms of variables, functions, and equations. Such an 

expression is known as a mathematical model of the given problem. The process of setting up a model, 

solving it mathematically, and interpreting the result in physical or other terms is called mathematical 

modeling or briefly modeling. 

 

 

Figure 1: Modeling, solving, interpreting 

In creating a mathematical model of a physical system, we frequently involve differential equation/ 

integral equation / integro-differential equations to express relationships, such as ‘the force acting on 

a falling object is proportional to its acceleration’, ‘voltage drop across a resistor is proportional to the 

current’, etc.  

Table 1.1: Three types of equations of a mathematical model: (i) Differential equation (ii) Integral 

equation (iii) Integro-differential equation. 

(i) Differential equation (ii) Integral equation (iii) Integro-differential equation 

Equations which involve 

derivatives of the variables 

in the model. 

Equations which involve 

integrals of the variables in 

the model. 

Equations which involve both 

derivatives and integrals of the 

variables in the model. 

 

For example: RC Electrical Circuit 

What are the amounts of charge and current flow in an electric circuit that consists a generator (E 

volt), a resistance (R ohms) and a capacitor (C capacitance)?  The RC electrical circuit is shown below. 
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From experiments, we know that the voltage loss through a resistor and capacitor is proportional 

to the current and charge respectively, where Δ𝑉𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟(𝑡) ∝ 𝑖(𝑡) and Δ𝑉𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟(𝑡) ∝ 𝑞(𝑡). 

Hence, Δ𝑉𝑅(𝑡) = 𝑅𝑖(𝑡) and Δ𝑉𝐶(𝑡) =
1

𝐶
𝑞(𝑡). 

 

According to Kirchhoff’s voltage law, the summation of voltage in a closed loop is equal to zero. 

Thus, (𝑉𝐵 − 𝑉𝐴) + (𝑉𝐹 − 𝑉𝐵) + (𝑉𝐷 − 𝑉𝐹) + (𝑉𝐴 − 𝑉𝐷) = 0 

𝑅𝑖(𝑡) +
1

𝐶
𝑞(𝑡) + 0 + (−𝐸(𝑡)) = 0 

𝑅𝑖(𝑡) +
1

𝐶
𝑞(𝑡) = 𝐸(𝑡) 

 

 

From definition, the current is equal to the rate of charge flow or the charge is the integral of the 

current over time. 

𝑖(𝑡) =
𝑑𝑞(𝑡)

𝑑𝑡
   or  𝑞(𝑡) = ∫ 𝑖(𝑡)𝑑𝑡  

  

Rearrange it, we obtain three different forms of mathematical model as shown below, to solve the 

desired variables (i.e. charge and current). Note that different methods and strategies are used to 

solve these equations. In this study, we will focus on the topic of differential equation. 

 

(i) 𝑅
𝑑𝑞(𝑡)

𝑑𝑡
+

1

𝐶
𝑞(𝑡) = 𝐸(𝑡) 

 

-involves derivative,  
𝑑𝑞(𝑡)

𝑑𝑡
. 

-This is known as 

differential equation. 

(ii) 𝑅𝑖(𝑡) +
1

𝐶
∫ 𝑖(𝑡)𝑑𝑡 =

𝐸(𝑡) 

 

-involves integrals, ∫ 𝑖(𝑡)𝑑𝑡. 

-This is known as integral 

equation. 

(iii) 𝑅
𝑑𝑞(𝑡)

𝑑𝑡
+

1

𝐶
∫ 𝑖(𝑡)𝑑𝑡 = 𝐸(𝑡) 

 

-involves both derivative, 
𝑑𝑞(𝑡)

𝑑𝑡
and 

integrals, ∫ 𝑖(𝑡)𝑑𝑡. 

-This is known as integro-differential 

equation. 

 

Differential equation (DE) plays a fundamental role in engineering because many physical phenomena 

are best formulated mathematically in terms of their rate of change. By solving a differential equation, 

we can gain a deeper understanding of the physical processes that these equations are describing. 

Some examples of fundamental laws that are written in terms of the rate of change of variables are 

shown in the table below.  



Table 1.2: Examples of fundamental laws written in the differential equation. 

Fundamental Law Mathematical Expression Variables and Parameter 

Newton’s 2nd Law of Motion 𝑑𝑣(𝑡)

𝑑𝑡
=

𝛴𝐹(𝑡)

𝑚
 

Velocity (𝑣); 

Force (𝐹);  

Mass (𝑚). 

Faraday’s Law (Voltage drop 

across an inductor) 
Δ𝑣𝐿(𝑡) = 𝐿

𝑑𝑖(𝑡)

𝑑𝑡
 

Voltage drop (Δ𝑣𝐿(𝑡)); 

Inductance (𝐿) 

Current (𝑖). 

Fourier’s Heat Law 
𝑞(𝑥) = −𝑘′

𝑑𝑇(𝑥)

𝑑𝑥
 

Heat flux (𝑞); 

Thermal conductivity (𝑘′); 

Temperature (𝑇). 

Fick’s law of diffusion 
𝐽(𝑥) = −𝐷

𝑑𝐶(𝑥)

𝑑𝑥
 

Mass flux (𝐽); 

Diffusion coefficient (𝐷); 

Concentration(𝐶). 

Table 1.3: Examples of some application of differential equations 

   

 

 
  



   

 

Hint: The use of differential equations may empower us to make precise predictions about the future 

behaviour of our models/ system. The motivation and implementation of the mathematical modelling 

with differential equation in the engineering problem solving is illustrated in Appendices 1.1 & 1.2. 

1.2 The classification/type of differential equations  

Different types of differential equations may require different strategies to solve the problem. Thus, 
it is important for the user to understand, recognize and classify the correct categories of differential 
equations. 

 
(i) Independent and dependent variables 

 

A differential equation expresses such that the dependent variable(s) depends on the independent 
variable. 

 

Dependent variable Independent variable 

It is the variable(s) that is 

differentiated. 

It is the variable(s) with respect to which differentiation 

occurs. 

Example (1): 

𝑑2𝑦

𝑑𝑥2 − 4𝑥
𝑑𝑦

𝑑𝑥
= 𝑐𝑜𝑠2𝑥   

This differential equation has dependent variable of  𝑦 and independent variable of  𝑥. 

 

Note: The variable 𝑦 is in the function of 𝑥, i.e.  𝑦 = 𝑦(𝑥). In other words, 𝑦 is changed with respect 

to 𝑥.  

 

Example (2): 



𝑑2𝑥

𝑑𝑡2 − 4𝑥
𝑑𝑥

𝑑𝑡
= 𝑐𝑜𝑠2𝑡   

This differential equation has dependent variable of  𝑥 and independent variable of  𝑡. 

Note: The variable 𝑥 is in the function of 𝑡, i.e. 𝑥 = 𝑥(𝑡). In other words, 𝑥 is changed with respect 

to 𝑡. 

 

 
 

(ii) Ordinary Differential Equation (ODE) versus Partial Differential Equation (PDE) 

 

Differential equation can be categorized into 2 cases: ODE & PDE. The classification of ODE and PDE 
depends on the number of independent variable, regardless of the number of dependent variables. 

 

CASE 1: ODE 

Those equations that involve ordinary derivatives (i.e. 𝑑 symbol) are called ODE. ODE has only one 

independent variable. It can be separated into the ODE problem or system of ODE problem depends 

on the number of dependent variable. 

(i) One dependent variable (ii) More than one dependent variable 

For example: Brine mixture problem 

𝑑𝑥

𝑑𝑡
= 2 −

𝑥

5
 , 

where x = concentration of salt. 

 

 

-This is an ODE problem: 

(i) One independent variable (t) 

(ii) One dependent variable (x) 

For example: Population of rabbit & fox 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥𝑦, 

𝑑𝑦

𝑑𝑡
= −𝑐𝑦 + 𝑑𝑥𝑦, 

where x = rabbit; y = fox. 

 

- This is a system of ODE problem: 

(i) One independent variable (t) 

(ii) More than one dependent variable (x & y) 

Comment: Solving ODE problem is the main focus of this study.  

 
 
 
 
 



CASE 2: PDE 

Those equations that involve partial derivatives (i.e. ∂ symbol) are called PDE. PDE has two 

independent variables or more. It can be separated into the PDE problem or system of PDE problem 

depends on the number of dependent variable. 

(i) One dependent variable (ii) More than one dependent variable 

For example: Transient heat equation  

∂𝑇(𝑥,𝑡)

∂𝑡
− 𝛼

∂2𝑇(𝑥,𝑡)

∂𝑥2 = 0 , 

where 𝑇 = temperature; 𝛼 = thermal 

diffusivity. 

 

-This is a PDE problem: 

(i) More than one independent variables (x & 

t) 

(ii)  One dependent variable (T) 

For example: Incompressible Navier-Stokes 

equation for pipe flow 

∂𝑢𝑖

∂𝑡
+ 𝑢𝑗

∂𝑢𝑖

∂𝑥𝑗
− 𝑣

∂2𝑢𝑖

∂𝑥𝑗 ∂𝑥𝑗
+

∂ω

∂𝑥𝑖
= 𝑔𝑖 ,  

where 𝑢 = flow velocity; ω = elevation 

- This is a system of PDE problem: 

(i) More than one independent variables (t , 𝑥𝑗 & 

𝑥𝑗 ) 

(ii) More than one dependent variables (𝑢𝑖 & ω) 

Comment: PDE is out of scope in this study. It will be covered in KIX1002. At current stage, 

students should know how to classify between ODE and PDE. 

 
(iii) Order of a differential equation 

 

The order of a differential equation is the degree of the highest derivative that occurs in the equation.  

The approach to find the order of ODE and PDE is the same as illustrated below. 

Case 1: Order of ODE 

1st order ODE: The order of highest derivative 𝑑 is 1 

Example (1): 

4
𝑑𝑥

𝑑𝑡
− 3

𝑑𝑦

𝑑𝑡
− 𝑥 + 𝑦 = cos(2𝑡)  

Example (2): 

(
𝑑𝑥

𝑑𝑡
)2 − 3

𝑑𝑦

𝑑𝑡
− 𝑥 + 𝑦 = cos(2𝑡)  



2nd order ODE: The order of highest derivative 𝑑2 is 2 

Example (1): 

𝑑2𝑓

𝑑𝑥2 − 4𝑥
𝑑𝑓

𝑑𝑥
= cos(2𝑥)  

Example (2): 

𝑑2𝑓

𝑑𝑥2 − 4𝑥 (
𝑑𝑓

𝑑x
)

4
 = cos(2𝑥)  

 

Case 2: Order of PDE 

1st order PDE: The order of highest derivative ∂ is 1 

Example (1): 

4
𝜕𝑓

𝜕𝑡
− 3

𝜕𝑓

𝜕𝑡
− 𝑥 + 𝑦 = cos(2𝑡)  

Example (2): 

𝜕𝑥

𝜕𝑡
+ (

𝜕𝑥

𝜕𝑦
)4 = cos(2𝑡) + 2𝑦  

2nd  order PDE: The order of highest derivative ∂2 is 2 

Example (1): 

4
𝜕𝑓

𝜕𝑥
− 3

∂2𝑓

∂y2 − 𝑥 + 𝑦 = cos(2𝑡)  

Example (2): 

∂2𝑓

∂t ∂y
+ (

𝜕𝑓

𝜕𝑦
)3 = cos(2𝑡) + 2𝑦  

Note:  The order of an equation is not affected by any power to which the derivatives may be raised.  

Moreover, degree of a differential equation is the power of the highest order derivative.  

Example 1.1: 

(
𝑑𝑥

𝑑𝑡
)2 − 3

𝑑𝑦

𝑑𝑡
− 𝑥 + 𝑦 = cos(2𝑡) 

The differential equation above is a 1st order ODE with degree 2.  

Prove:    (i) 1st order because the order of highest derivative 𝑑 is 1 

(ii) ODE because it has only one independent variable (𝑡) 

(iii) Degree 2 because the power of the highest order derivative (
𝑑𝑥

𝑑𝑡
)2 is 2 



Example 1.2: 

∂2𝑓

∂t ∂y
+ (

𝜕𝑓

𝜕𝑦
)3 = cos(2𝑡) + 2𝑦 

The differential equation above is a 2nd order PDE with degree 1.  

Prove:    (i) 2nd order because the order of highest derivative ∂2 is 2 

(ii) PDE because it has more than one independent variables (𝑡 & 𝑦) 

(iii) Degree 1 because the power of the highest order derivative 
∂2𝑓

∂t ∂y
 is 1 

 

Example 1.3: 

𝜕𝑥

𝜕𝑡
+ (

𝜕𝑥

𝜕𝑦
)4 = cos(2𝑡) + 2𝑦 

The differential equation above is a 1st order PDE with degree 4.  

Prove:    (i) 1st order because the order of highest derivative ∂ is 1 

(ii) PDE because it has more than one independent variables (𝑡 & 𝑦) 

(iii) Degree 4 because the power of the highest order derivative (
𝜕𝑥

𝜕𝑦
)4 is 4 

 

(iv) Linear and nonlinear differential equations 

 

We used to plot a linear graph of  𝑦1 versus 𝑦2 using 𝑦1 = 𝑚𝑦2 + 𝑐 (Linear Algebraic Eqn), where 
𝑚 & 𝑐  are the slope and the intercept respectively. In this case, 𝑦1 is in the function of 𝑦2. Therefore, 
𝑦1 is the dependent variable while 𝑦2 is the independent variable. Rearrange it, we obtain the general 
form of linear equation as follows: 𝑎1𝑦1 + 𝑎0𝑦2 = 𝑐 where 𝑎1 = 1 and 𝑎0 = −𝑚. 

By using similar approach, we get 1st order linear ODE where 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 = 𝑔(𝑥).  In 
this case, 𝑦′ is the first derivative of 𝑦. Linear ODE has the properties of 𝑓(𝑦1 + 𝑦2) = 𝑓(𝑦1) + 𝑓(𝑦2).  

 

In general, a linear ODE of order thn has the following form: 

𝑎𝑛(𝑥)𝑦(𝑛) + 𝑎𝑛−1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑎2(𝑥)𝑦′′ + 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 = 𝑔(𝑥), 

where 

𝑎𝑖(𝑥) is a function of independent variable (𝑥) for 𝑖 = 0,1, … , 𝑛. 

𝑔(𝑥) is a function of independent variable (𝑥) 

𝑦 is the dependent variable 



 

Any equation of ODE that does not follow the linear format as equation above is known as nonlinear 

ODE. For example: 

𝑎𝑛(𝑥, 𝑦)(𝑦(𝑛))𝐴 + 𝑎𝑛−1(𝑥, 𝑦)(𝑦(𝑛−1))𝐵 + ⋯ + 𝑎1(𝑥, 𝑦)(𝑦′)𝐶 + 𝑎0(𝑥, 𝑦)(𝑦)𝐷 = 𝑔(𝑥, 𝑦). 

where the power 𝐴, 𝐵, 𝐶 & 𝐷 ≠ 1 ;  𝑎𝑖(𝑥, 𝑦) or 𝑔(𝑥, 𝑦) are functions of dependent variable (𝑦) 

 

Examples of the linear and nonlinear ODEs are given as follow. 

Case 1: Linear ODE 

General format of 1st order linear ODE:  𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 = 𝑔(𝑥) 

For example: 

1st order linear ODE: −4
𝑑𝑦

𝑑𝑥
− 𝑥2 = 0, 

Rearrange it into the general format: −4
𝑑𝑦

𝑑𝑥
= 𝑥2 

where 

𝑦′ =
𝑑𝑦

𝑑𝑥
               (𝑦 = 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 & 𝑥 = 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) 

𝑎1(𝑥) = −4; 

𝑎0(𝑥) = 0; 

 𝑔(𝑥) = 𝑥2. 

 

∴ It is a 1st order linear ODE since it follows the linear format: 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 = 𝑔(𝑥) 

General format of 2nd  order linear ODE:  𝑎2(𝑥)𝑦′′ + 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 = 𝑔(𝑥) 

For example: 

2nd order linear ODE: 
𝑑2𝑓

𝑑𝑥2 − 4𝑥
𝑑𝑓

𝑑𝑥
− 𝑐𝑜𝑠2𝑥 − 3 = 0, 

Rearrange it into the general format: 
𝑑2𝑓

𝑑𝑥2 − 4𝑥
𝑑𝑓

𝑑𝑥
= 𝑐𝑜𝑠2𝑥 + 3, 

where 

𝑓′′ =
𝑑2𝑓

𝑑𝑥2 ;               (𝑓 = 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 & 𝑥 = 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) 

𝑓′ =
𝑑𝑓

𝑑𝑥
 ; 



 𝑎2(𝑥) = 1;  

𝑎1(𝑥) = −4𝑥; 

 𝑎0(𝑥) = 0; 

 𝑔(𝑥) = 𝑐𝑜𝑠2𝑥 + 3  

 

∴ It is a 2nd order linear ODE since it follows the linear format: 

𝑎2(𝑥)𝑓′′ + 𝑎1(𝑥)𝑓′ + 𝑎0(𝑥)𝑓 = 𝑔(𝑥) 

 

General format of 3rd   order linear ODE:  𝑎3(𝑥)𝑦′′′ + 𝑎2(𝑥)𝑦′′ + 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 = 𝑔(𝑥) 

For example: 

3rd order linear ODE:     4
𝑑3𝑥

𝑑𝑡3 + 3
𝑑𝑥

𝑑𝑡
+ 2𝑥 + cos(𝑡) = 2,              

Rearrange it into the general format: 4
𝑑3𝑥

𝑑𝑡3 + 3
𝑑𝑥

𝑑𝑡
+ 2𝑥 = 2 − cos(𝑡), 

where 

𝑥′′′ =
𝑑3𝑥

𝑑𝑡3  ;               (𝑥 = 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 & 𝑡 = 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) 

𝑥′ =
𝑑𝑥

𝑑𝑡
 ; 

𝑎3(𝑡) = 4;  

𝑎2(𝑡) = 0; 

 𝑎1(𝑡) = 3; 

 𝑎0(𝑡) = 2; 

 𝑔(𝑡) = 2 − cos (𝑡)  

 

 ∴ It is a 3rd order linear ODE since it follows the linear format: 

𝑎3(𝑡)𝑥′′′ + 𝑎2(𝑡)𝑥′′ + 𝑎1(𝑡)𝑥′ + 𝑎0(𝑡)𝑥 = 𝑔(𝑡) 

 

 

 



Case 2: Nonlinear ODE 

General format of 1st order linear ODE:  𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 = 𝑔(𝑥) 

 

For example: 

1st order nonlinear ODE: −4 (
𝑑𝑦

𝑑𝑥
)

2
= 𝑥2,  

Rearrange it into the general format: Same Eqn. 

 

∴ It is a 1st order nonlinear ODE because it does not obey linear equation: 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 = 𝑔(𝑥) 

as the derivative 𝑦′ ≠ (
𝑑𝑦

𝑑𝑥
)

2
  where the  

𝑑𝑦

𝑑𝑥
  is squared. 

 

General format of 2nd  order linear ODE:  𝑎2(𝑥)𝑦′′ + 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 = 𝑔(𝑥) 

 

For example:  

2nd order nonlinear ODE: 
𝑑2𝑓

𝑑𝑥2 − 4𝑓
𝑑𝑓

𝑑𝑥
+ 𝑐𝑜𝑠2𝑥 = 0, 

Rearrange it into the general format: 
𝑑2𝑓

𝑑𝑥2 − 4𝑓
𝑑𝑓

𝑑𝑥
= −𝑐𝑜𝑠2𝑥 

 

∴ It is a 2nd order nonlinear ODE because it does not obey linear equation: 𝑎2(𝑥)𝑓′′ + 𝑎1(𝑥)𝑓′ +

𝑎0(𝑥)𝑓 = 𝑔(𝑥) as the 𝑎1(𝑥) ≠ −4𝑓, where 𝑎1(𝑥) should not be in the function of dependent 

variable 𝑓. 

 

General format of 3rd   order linear ODE:  𝑎3(𝑥)𝑦′′′ + 𝑎2(𝑥)𝑦′′ + 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 = 𝑔(𝑥)  

 

For example: 

3rd order nonlinear ODE: 4
𝑑3𝑥

𝑑𝑡3 + 3
𝑑𝑥

𝑑𝑡
+ 2sin (𝑥) + cos(𝑡) = 2,           

Rearrange it into the general format: 4
𝑑3𝑥

𝑑𝑡3 + 3
𝑑𝑥

𝑑𝑡
+ 2 sin(𝑥) = 2 − cos(𝑡),     

 



∴ It is a 3rd order nonlinear ODE because it does not obey linear equation: 𝑎3(𝑡)𝑥′′′ + 𝑎2(𝑡)𝑥′′ +

𝑎1(𝑡)𝑥′ + 𝑎0(𝑡)𝑥 = 𝑔(𝑡) as the 𝑥 ≠ sin (𝑥), where it has nonlinear sinusoidal function of 

dependent function 𝑥. 

 

 

Hint 1: Most of the time, nonlinear ODE has nonlinear components such as coefficient 𝑎𝑖(𝑥, 𝑦)  in the 
function of dependent variable  𝑦  and the 𝑦 or its derivative have degree more than one, i.e. 𝑦2  & 

(
𝑑𝑦

𝑑𝑥
)3.  

Hint 2: For linear differential equations, there are no products of the dependent variable such as 
coefficient 𝑎𝑖(𝑥)     in the function of dependent variable 𝑥 and its derivatives and neither the 

derivative occur to any power other than the first power, i.e. 𝑦1  & (
𝑑𝑦

𝑑𝑥
)1.  

 

Extra Info 1: For your additional knowledge, many of the nonlinear equations that occur in engineering 
cannot be solved easily as they stand, but can be solved, for practical engineering purpose, by the 
process of replacing them with linear equations that are a close approximation – at least in some 
region of interest.  

 

Extra Info 2: Sometimes, even if we can’t completely solve a differential equation (especially when it 
deals with nonlinear case), we may still be able to determine useful properties about its solution 
(qualitative information). 

 
(v) Homogeneous and nonhomogeneous equations of linear equation 

 

This is applied to the case of linear differential equation only. Arrange the linear equation in standard 
format, where all terms containing dependent variable occur on left-hand side (LHS), while terms 
containing only the independent variable and constant occur on the right-hand side (RHS). Linear ODE 
can be categorized into homogenous and non-homogeneous equation by evaluating the RHS term as 
follows. 

 

Case 1: Homogeneous equation 

RHS term is equal to zero in the standard format 

(i) Linear homogeneous ODE 

 

Example (1): 

𝑑𝑥

𝑑𝑡
+ 4𝑥 = 0  

Example (2): 



𝑑2𝑥

𝑑𝑡2 + 3
𝑑𝑥

𝑑𝑡
+ 𝑥𝑠𝑖𝑛(𝑡) = 0  

 

(ii) Linear homogeneous PDE 

 

Example (1): 

𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑦
= 0  

Example (2): 

𝜕2𝑓

𝜕𝑥𝜕𝑦
+

𝜕𝑓

𝜕𝑦
= 0  

 

 

Case 2: Nonhomogeneous equation 

RHS term is equal to nonzero in the standard format 

(i) Linear nonhomogeneous ODE 

 

Example (1): 

𝑑𝑥

𝑑𝑡
+ 4𝑥 = 5  

Example (2): 

𝑑2𝑥

𝑑𝑡2 + 3
𝑑𝑥

𝑑𝑡
+ 𝑥𝑠𝑖𝑛(𝑡) = cos (𝑡)   

 

(ii) Linear nonhomogeneous PDE 

 

Example (1): 

𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑦
= 4𝑥2 + 2𝑦  

Example (2): 



𝜕2𝑓

𝜕𝑥𝜕𝑦
+

𝜕𝑓

𝜕𝑦
= 5𝑦  

 

 

(vi) Homogeneous and nonhomogeneous equations of  (
𝑑𝑦

𝑑𝑥
=

𝑓(𝑥,𝑦)

𝑔(𝑥,𝑦)
)  

Previous section (v) is used to classify the homogeneity of linear ODE. For non-linear ODE, other 
method is used to classify the homogeneity as shown in Appendix 1.3.  

 

This classification is important especially for solving the non-linear ODE problem. Since solving the 
non-linear ODE problem is out of scope in this study, we will not cover it here. 

 

1.3 Solution to differential equation  

The difference between the solution of algebraic equation and differential equation is shown in table 
below: 

 

Case (1): Solution to Algebraic Equation 

(i)  We expect the solution to be a number  

      For example:  

      Solution of the equation 𝑥 + 7 = 10  

       is 𝑥 = 3 

 

Or, perhaps, 

 

(ii)  Solution to be a set of real & complex numbers 

For example:  

Solution of  the polynomial equation 𝑥3 − 5𝑥2 + 8𝑥 = 12  

are 𝑥1 = 3.7162; 𝑥2 = 0.6419 + 𝑖1.6784 

 

Or, perhaps, 

 

(iii) Solution to be a set of vector or matrix  

For example:  

Solution of  two simultaneous equations 𝑥 − 5𝑦 = 3 and 3𝑥 + 9𝑦 = 12  



is a vector {
𝑥
𝑦} = {

3.625
0.125

} . 

 

Case (2): Solution to Differential Equation 

The solution of differential equation is not the same as the case of algebraic equation. 

 

(i)  We expect the solution to be a function  

      For example:  

      Solution of the differential equation 
𝑑2𝑥

𝑑𝑡2 + 25𝑥 = 0  

      is 𝑥(𝑡) = 𝐴𝑠𝑖𝑛(5𝑡) + 𝐵𝑐𝑜𝑠(5𝑡) 

 

Or, perhaps, 

 

(ii)  Solution to be a  family of functions  

For example:  

Solution of  multiple differential equations 
𝑑𝑥

𝑑𝑡
= 6𝑥 − 2𝑦 and 

𝑑𝑦

𝑑𝑡
= −3𝑦 + 5𝑥  

are 𝑥(𝑡) = 𝐴𝑒𝑡(7.2419) − 𝐵𝑒𝑡(−0.4419); 𝑦(𝑡) = 𝐴𝑒𝑡(4.7016) − 𝐵𝑒𝑡(−1.7016) 

 

The solution of differential equation can be further divided into two types: (a) General Solution (b) 
Particular Solution. 

 

Case (1): General solution 

The most general function that will satisfy the differential equation contains one or more arbitrary 

constants. Normally the number of arbitrary constants equal to the order of the differential 

equation. 

 

For example:  

The general solution of the differential equation 
𝑑𝑥

𝑑𝑡
= −4𝑥 

is 𝑥(𝑡) = 𝐴𝑒−4𝑡 

where any arbitrary constant 𝐴 can satisfy the equation. 



Hint 1:  In fact, general solution indicates that there are an infinite number of solutions to the 

differential equation unless we are given the specific condition of the problem.  

 

Case (2): Particular solution 

Giving particular numerical values to the constants in the general solution results in a particular 

solution of the equation. Normally, particular solution can be obtained by knowing the initial or 

boundary condition. 

 

For example:  

Previously, let the general solution of the differential equation 
𝑑𝑥

𝑑𝑡
= −4𝑥 is 𝑥(𝑡) = 𝐴𝑒−4𝑡 where 

any arbitrary constant 𝐴 can satisfy the equation.  

 

Given initial condition where 𝑥(0) = 2.5, 

𝑥(𝑡) = 𝐴𝑒−4𝑡 = 𝐴𝑒−4(0) = 𝐴 = 2.5 

 

Thus, the particular solution of the differential equation 
𝑑𝑥

𝑑𝑡
= −4𝑥 which has the value 2.5 when 

𝑡 = 0 is 𝑥(𝑡) = 2.5𝑒−4𝑡.  Here, only a specific constant 𝐴 = 2.5  can satisfy the equation. 

 

Think: What is the particular solution of the problem if the initial condition changes to (0) = 8 ? 

 

Hint 2: The actual solution to a differential solution is the specific solution that not only satisfies the 

differential equation, but also satisfies the given initial/boundary conditions. 

The particular solution can be obtained from either “Boundary-value problem” or “Initial-
value problem”. It depends on the given specific condition about the value of the solution at a 
particular point, in addition to the differential equation. 

Case (1): Boundary-value problem 

All conditions are specified at different values of the independent variable, usually at extreme points 

or boundaries of a system. 

For example:  

The particular solution of the differential equation 
𝑑2𝑥

𝑑𝐿2 + 25𝑥 = 0    



which has the boundary conditions  𝑥(0) = 4 & 𝑥(10) = 7                  [Comment: 𝑥 are given at 𝐿 =

0 & 10] 

is (𝐿) = 5.78 sin(5𝐿) + 4cos (5𝐿) . 

 

Case (2): Initial-value problem 

All conditions are specified at the same value of the independent variable. 

 

For example:  

The particular solution of the differential equation  
𝑑2𝑥

𝑑𝑡2 + 25𝑥 = 0  

which has the initial condition 𝑥(0) = 4 & 𝑥′(0) = 8                            [Comment: 𝑥 & 𝑥′ are given at 

𝑡 = 0] 

is  𝑥(𝑡) = 1.6 𝑠𝑖𝑛(5𝑡) + 4𝑐𝑜𝑠 (5𝑡) . 

 

Graphical representations of the boundary condition and initial condition can be illustrated below. 

A cantilevered beam under boundary 

conditions 

A cantilevered beam under initial conditions 

 

Problem: We want to know what is the 

vibration response occurs under the  

boundary conditions: 𝑥(0) = 4𝑚 & 𝑥(10) =

7𝑚    

(i.e. we displace the tip of the beam by 4cm 

upward and displace the middle of the beam by 

7cm) 

 

Problem: We want to know what is the vibration 

response occurs under the  initial conditions: 

𝑥(0) = 4𝑚 & 𝑥′(0) = 8𝑚/𝑠    

(i.e. we displace the tip of the beam by 4m upward 

and impact the tip simultaneously to cause it 

moving with initial velocity) 

Note:  For 1st order differential equation, the condition can be treated as initial/ boundary condition. 

For higher order differential equation, the distinction becomes obvious. 

 

𝑥(0) = 4 

𝑥(10) = 7 

10 

𝑥(𝐿) 

L 

𝑥(0) = 4 

𝑥(𝐿) 

𝑥′(0) = 8         


