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FOURIER SERIES & ITS APPLICATION 
WEEK 10: FOURIER SERIES & ITS APPLICATION  

10.1 INTRODUCTION 

In engineering mathematic 1, you have learned various types of series such as  

 

(i) Power Series, 𝑦(𝑥) = ∑ 𝑎𝑛
∞
𝑛=0 (𝑥 − 𝑥0)

𝑛  

(ii) Frobenius Series, 𝑦(𝑥) = ∑ 𝑎𝑛
∞
𝑛=0 (𝑥 − 𝑥0)

𝑛+𝑟  

 

which models the polynomial function by the summation of infinite number of quantities/ terms. 

Previously, we have demonstrated that series is useful in solving engineering problem such as ODE, 

where we have successfully applied Power series and Frobenius series methods to solve 2nd order 

variable coefficient linear homogenous ODE with ordinary point and regular singular point 

respectively. 

 

In engineering mathematic 2, you will learn a new series called Fourier series. Fourier series can be 

used to model any types of periodic function. It is useful to solve nonhomogenous ODE with periodic 

excitation.  

(i) Fourier Series, 𝑓(𝑥) = 𝑎0 + ∑ (𝑎𝑛 cos 𝑛𝜔𝑥 + 𝑏𝑛 sin𝑛𝜔𝑥)
∞
𝑛=1  

 

10.2 PERIODIC VS NON-PERIODIC FUNCTIONS 

Before we continue, students should have the basic understanding on the definition of periodic & 

non-periodic functions.  

Periodic Function Non-Periodic Function 

- Periodic function is a function that repeats its 
values at regular intervals (i.e. period does 
exist) 

- Non-periodic function is a function that does 
not repeat  its values at regular intervals (i.e. 
period doesn’t  exist) 
 

- Also known as aperiodic function 

In mathematic, periodic function 𝑓(𝑡) is given: 

𝑓(𝑡) = 𝑓(𝑡 + 𝑛𝑝) 

In mathematic, aperiodic function 𝑓(𝑡) is given: 

𝑓(𝑡) ≠ 𝑓(𝑡 + 𝑛𝑝) 

 

Where 𝑛 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 = 1,2, … 

               𝑝 = 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑢𝑛𝑖𝑡: 𝑠)   

               𝐿 = ℎ𝑎𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 = 
𝑝

2
 

 In simple, period is the time taken to move from its starting point and return to the original point 
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Graphical representation of a periodic signal is illustrated in Figure 10.1. The signal repeats itself 

after a certain period, 𝑝, where 𝑓(𝑡) = 𝑓(𝑡 + 𝑛𝑝) is valid.  

Example: constant, sine function, cosine function, tangent function, etc.  

 

Figure 10.1: An example of periodic signal 

 

Graphical representation of a non-periodic signal is illustrated in Figure 10.2. The signal does not 

repeats itself after certain period, 𝑝, where 𝑓(𝑡) ≠ 𝑓(𝑡 + 𝑛𝑝). 

Example: 𝑥, 𝑥2, 𝑥3, 𝑒𝑥, ln 𝑥, etc.  

 

 

Figure 10.2: An example of non-periodic signal 

 

Note: Student should be able to retrieve all important parameters from a periodic signal as follow. 

(i)  𝑝 = 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑢𝑛𝑖𝑡: 𝑠)   

(ii)  𝐿 = ℎ𝑎𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 = 
𝑝

2
 

(iii)  𝑓 =  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑢𝑛𝑖𝑡: 𝐻𝑧) =
1

𝑝
 

(iv)  𝜔 = 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑢𝑛𝑖𝑡:
𝑟𝑎𝑑

𝑠
) = 2𝜋𝑓 =

2𝜋

𝑝
 

(v) The mathematical representation of a periodic signal,𝑓(𝑡) = 𝑓(𝑡 + 𝑛𝑝)  

 

 

𝑓(𝑡)

= 

𝑡 

𝑓(𝑡) 

𝑡 
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Example: Retrieve the 𝑝, 𝐿, 𝑓 & 𝜔  from the following function and write the mathematical 

representation of the periodic function.  

(i) 5sin (𝑡) 

(ii) 10cos (
𝜋

5
𝑡) 

(iii) 7 

 

Solution: 

(i) The general formula for the sine wave is  𝐴sin(𝜔𝑡) , where 𝐴 =amplitude, 𝜔 =angular 

frequency.  

 Thus, 5sin (𝑡) has 𝐴 = 5and 𝜔 = 1 

 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑓 =
𝜔

2𝜋
=

1

2𝜋
   

 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑝 =
1

𝑓
= 2𝜋  

 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑, 𝐿 =
𝑝

2
= 𝜋  

 Mathematical representation of the periodic function, 𝑓(𝑡) = 𝑓(𝑡 + 2𝜋𝑛) 

where  5 sin(𝑡) = 5 sin(2𝜋𝑛 + 𝑡)  

 Also known as the periodic function with period of 2𝜋 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

 

 

 

 

 

 

 

 

(ii) The general formula for the cosine wave is  𝐴cos(𝜔𝑡), where 𝐴 =amplitude, 𝜔 =angular 

frequency.  

 Thus, 10cos (
𝜋

5
𝑡) has 𝐴 = 10 and 𝜔 =

𝜋

5
 

 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑓 =
(𝜋 5⁄ )

2𝜋
=

1

10
  

 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑝 =
1

𝑓
= 10  

 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑, 𝐿 =
𝑝

2
= 5 

 Mathematic representation of the periodic function, 𝑓(𝑡) = 𝑓(𝑡 + 10𝑛) 

where  10cos (
𝜋

5
𝑡)  = 5 sin(2𝜋𝑛 + 𝑡)  

 Also known as the periodic function with period of 10 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

 

 

 

 

 

 

 

Observation:  

Repeating itself over finite period, 𝑝 = 2𝜋 

(e.g. 𝑓(0) = 𝑓(2𝜋)) 

 

Observation:  

Repeating itself over finite period, 𝑝 = 10 

(e.g. 𝑓(0) = 𝑓(10)) 

 

 𝑝 = 2𝜋 

 𝑝 = 10 
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(iii) The general formula for the constant is  𝐴, where 𝐴 =amplitude.  

 Thus, 𝐴 = 7 

 7 is a periodic function with mathematical representation of, 𝑓(𝑡) = 𝑓(𝑡 + ∞) 

where 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑝 = ∞ 

 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑, 𝐿 =
𝑝

2
= ∞  

 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑓 =
1

𝑝
= 0  

 angular frequency, 𝜔 = 2𝜋𝑓 = 0 

 

 

 

 

 

 

 

Exercise 1:Check if 4 sin(15𝑡) = 4 sin(15𝑡 + 2𝜋𝑛)  is correct. If not correct, rewrite the 

mathematical representation of the periodic function. 

 

Exercise 2:  Give an example of periodic function with period of 𝜋 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

Exercise 3:  Give an example of periodic function with angular frequency of 
𝜋

5
 𝑟𝑎𝑑/𝑠 

 

 

10.3 TRIGONOMETRIC SERIES AND FOURIER SERIES 

Trigonometric series is a series of the following form: 

𝑓(𝑥) = 𝑎0⏟
𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

+∑(𝑎𝑛 cos 𝑛𝜔𝑥 + 𝑏𝑛 sin𝑛𝜔𝑥)

∞

𝑛=1⏟                    
𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

 

,which is the summation of an arbitrary constant and linear superposition of infinite number of 

sinusoidal functions (i.e. function with a cosine function and a sine function). More information about 

the sinusoidal function can be found in Appendix 10.1. 

 

 

 

 

 

 

Observation:  

Repeating itself over undefined period, 

𝑝 = ∞ (e.g. 𝑓(0) = 𝑓(∞)) 

 𝑝 = ∞ 
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Graphical representation of the RHS of the Trigonometric series with fundamental angular 

frequency, 𝜔 = 1. 

Arbitrary 
constant, 𝑎0 

1st term of the 
sinusoidal function, 

𝑆𝐹1 = 

𝑎1 cos 𝑥 + 𝑏1 sin 𝑥 

2nd term of the 
sinusoidal function, 

𝑆𝐹2 = 

𝑎2 cos 2𝑥 + 𝑏2 sin2𝑥 
 

3rd term of the 
sinusoidal function, 

𝑆𝐹3 = 

𝑎3 cos 3𝑥 + 𝑏3 sin3𝑥 

And so on… 

     

 

+ … 

 

 

 

Let the coefficient 𝑎𝑛 & 𝑏𝑛 to be non-zero arbitrary coefficient. We can simplify it to be 

𝑓(𝑥) = 𝑎0 + 𝑆𝐹1 + 𝑆𝐹2 +⋯+ 𝑆𝐹𝑛 

where 𝑆𝐹𝑛 denoted the 𝑛th term of the sinusoidal function. 

 

For example:  

𝑓(𝑥) = 5 + (6 𝑐𝑜𝑠𝑥 + 3𝑠𝑖𝑛𝑥) + (10𝑐𝑜𝑠2𝑥 + 1.5𝑠𝑖𝑛2𝑥) + (8𝑐𝑜𝑠3𝑥 + 4𝑠𝑖𝑛3𝑥) + ⋯+ 𝑆𝐹𝑛 

where 𝑎0 = 5 

               𝑆𝐹1 = 6 𝑐𝑜𝑠𝑥 + 3𝑠𝑖𝑛𝑥 

               𝑆𝐹2 = 10𝑐𝑜𝑠2𝑥 + 1.5𝑠𝑖𝑛2𝑥 

               𝑆𝐹3 = 8𝑐𝑜𝑠3𝑥 + 4𝑠𝑖𝑛3𝑥 

               𝑆𝐹𝑛 = 𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥 , 𝑛 = 1,2,… ,∞ 

 

Fourier series is extended from the previous Trigonometric series, where all the unknown coefficient 

𝑎𝑛 & 𝑏𝑛 can be found by the Euler’s formulae below. Note that Fourier series is applicable for any 

periodic function with arbitrary period of 𝑝 = 2𝐿. 

𝑓(𝑥) = 𝑎0⏟
𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

+∑(𝑎𝑛 cos 𝑛𝜔𝑥 + 𝑏𝑛 sin𝑛𝜔𝑥)

∞

𝑛=1⏟                    
𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

 

where  𝑎0 =
1

2𝐿
∫ 𝑓(𝑥) 𝑑𝑥
𝐿

−𝐿
 

               𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑐𝑜𝑠 𝑛𝜔𝑥  𝑑𝑥
𝐿

−𝐿
 

               𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝜔𝑥  𝑑𝑥
𝐿

−𝐿
  

                𝜔 =
2𝜋

𝑝
=
𝜋

𝐿
 

𝑎2𝑐𝑜𝑠2𝑥 
𝑎3𝑐𝑜𝑠3𝑥 

𝑎0 

𝑎1𝑐𝑜𝑠𝑥 

𝑏1𝑠𝑖𝑛𝑥 𝑏2𝑠𝑖𝑛2𝑥 
𝑏3𝑠𝑖𝑛3𝑥 

Extra Info: Check appendices 11.2 & 11.3 

to understand how to derive the Euler’s 

formulae as well as the convergence of 

the Fourier series 
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Fourier series is named in honour of Jean-Baptiste Joseph Fourier (1768-1830), who found that the 

trigonometric series can be used to represent a periodic function. In fact, a complicated periodic signal 

is merely a linear superposition of multiple sine and cosine waves.  

 

Example 10.3.1:  

 

(i) Is the signal above a periodic signal or non-periodic signal?  

        Solution (i):  The signal repeats itself over finite period, thus it is a periodic signal. 

 

(ii) If it is a periodic signal, identify its period. Hence, write its function. 

        Solution (ii):   

 

 

 

 

 

• The time function of the rectangular wave: 

• 𝑓(𝑥) = {
−1     if  − 𝜋 < 𝑥 < 0 

1       if   0 < 𝑥 < 𝜋
       and 𝑓(𝑥) = 𝑓(𝑥 + 𝑛(2𝜋)) where 𝑛 = 1,2,… ,∞ 

 

Precaution:  This information "𝑓(𝑥) = 𝑓(𝑥 + 𝑛(2𝜋))" must be provided to indicate that it is a 
periodic signal. 

 

Example 10.3.2: 

Find the Fourier series of the following signal. 

(i) 𝑓(𝑥) = {
−𝑘     if  − 𝜋 < 𝑥 < 0 

𝑘       if   0 < 𝑥 < 𝜋
 

        Solution (i):  The signal does not repeat itself, thus it is a non-periodic signal. Fourier series 
cannot be applied to non-periodic signal. 

 

 

 

𝑝 = 2𝜋 

… … 

… … 
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(ii) 𝑓(𝑥) = {
−𝑘     if  − 𝜋 < 𝑥 < 0 

𝑘       if   0 < 𝑥 < 𝜋
  &  𝑓(𝑥) = 𝑓(𝑥 + 𝑛(2𝜋)) where 𝑛 = 1,2,… ,∞ 

 

        Solution (ii):  The signal repeat itself over finite period, 𝑝 = 2𝜋, thus it is a periodic signal. 
Fourier series can be applied to periodic signal. 

 

 

 

 

Fourier Series expression: 

𝑓(𝑥) = 𝑎0⏟
𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

+∑(𝑎𝑛 cos 𝑛𝜔𝑥 + 𝑏𝑛 sin𝑛𝜔𝑥)

∞

𝑛=1⏟                    
𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

 

where  𝑎0 =
1

2𝐿
∫ 𝑓(𝑥) 𝑑𝑥
𝐿

−𝐿
 

               𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑐𝑜𝑠 𝑛𝜔𝑥  𝑑𝑥
𝐿

−𝐿
 

               𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝜔𝑥  𝑑𝑥
𝐿

−𝐿
  

                 

Step 1: Retrieve all important parameters from the periodic signals.  

Period, 𝑝 = 2𝜋;  

Half of the Period, 𝐿 = 𝜋;  

Frequency, 𝑓 =
1

2𝜋
 𝐻𝑧 

Angular frequency, 𝜔 =
2𝜋

𝑝
= 1 𝑟𝑎𝑑/𝑠 

 

Step 2: Solve the coefficient 𝑎0 

𝑎0 =
1

2𝐿
∫ 𝑓(𝑥) 𝑑𝑥
𝐿

−𝐿
=

1

2𝜋
∫ 𝑓(𝑥) 𝑑𝑥
𝜋

−𝜋
  

                                          =
1

2𝜋
[∫ (−𝑘)𝑑𝑥
0

−𝜋
+ ∫ (𝑘)𝑑𝑥

𝜋

0
]  

                                          =
1

2𝜋
[−𝑘𝑥]−𝜋

0 +
1

2𝜋
[𝑘𝑥]0

𝜋  

                                          =
1

2𝜋
[0 − (−𝑘)(−𝜋)] +

1

2𝜋
[ (𝑘)(𝜋) − 0]  

= 0 

Comment: 𝑎0 indicates the average of the periodic signal.  

 

 

 

 

… … 

… … 
Average, 

𝑎0 = 0 
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Step 3: Solve the coefficient 𝑎𝑛 

𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑐𝑜𝑠 𝑛𝜔𝑥  𝑑𝑥
𝐿

−𝐿
=
1

𝜋
∫ 𝑓(𝑥) 𝑐𝑜𝑠 𝑛𝑥  𝑑𝑥
𝜋

−𝜋
  

                                                           =
1

𝜋
∫ −𝑘 𝑐𝑜𝑠 𝑛𝑥 𝑑𝑥
0

−𝜋
+
1

𝜋
∫ 𝑘 𝑐𝑜𝑠 𝑛𝑥 𝑑𝑥
𝜋

0
  

                                                           =
1

𝜋
[−𝑘

𝑠𝑖𝑛𝑛𝑥

𝑛
]
−𝜋

0
+
1

𝜋
[𝑘

𝑠𝑖𝑛𝑛𝑥

𝑛
]
0

𝜋
  

                                                           =
1

𝜋
[0 − (−𝑘)(

𝑠𝑖𝑛𝑛(−𝜋)

𝑛
)] +

1

𝜋
[(𝑘) (

𝑠𝑖𝑛𝑛(𝜋)

𝑛
) − 0]  

                                                           =
1

𝜋
[(𝑘) (

𝑠𝑖𝑛𝑛(−𝜋)

𝑛
) + (𝑘) (

𝑠𝑖𝑛𝑛(𝜋)

𝑛
)]            [Hint: 𝑠𝑖𝑛𝑛(−𝜋) = −𝑠𝑖𝑛𝑛(𝜋)] 

                                                           = 0 

 

Step 4: Solve the coefficient 𝑏𝑛 

𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝜔𝑥  𝑑𝑥
𝐿

−𝐿
=
1

𝜋
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝑥  𝑑𝑥
𝜋

−𝜋
  

                                                           =
1

𝜋
∫ −𝑘 𝑠𝑖𝑛 𝑛𝑥 𝑑𝑥
0

−𝜋
+

1

2𝜋
∫ 𝑘 𝑠𝑖𝑛 𝑛𝑥 𝑑𝑥
𝜋

0
  

                                                           =
1

𝜋
[−𝑘

𝑐𝑜𝑠𝑛𝑥

−𝑛
]
−𝜋

0
+
1

𝜋
[𝑘

𝑐𝑜𝑠𝑛𝑥

−𝑛
]
0

𝜋
  

                                                           =
1

𝜋
[
𝑘

𝑛
− (−𝑘)(

𝑐𝑜𝑠𝑛(−𝜋)

−𝑛
)] +

1

𝜋
[(𝑘) (

𝑐𝑜𝑠𝑛(𝜋)

−𝑛
) −

𝑘

−𝑛
]  

                                                          =
1

𝜋
[
2𝑘

𝑛
− (𝑘) (

𝑐𝑜𝑠𝑛(−𝜋)

𝑛
) + (𝑘) (

𝑐𝑜𝑠𝑛(𝜋)

−𝑛
)]    [Hint: 𝑐𝑜𝑠𝑛(−𝜋) = 𝑐𝑜𝑠𝑛(𝜋)] 

                                                           =
2𝑘

𝑛𝜋
[1 − 𝑐𝑜𝑠(𝑛𝜋)]  where 𝑛 = 1,2,3, …   

𝑏𝑛 = {

2𝑘

𝑛𝜋
[1 − (−1)] 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛

2𝑘

𝑛𝜋
[1 − (1)] 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑛

                                               [Hint: 𝑐𝑜𝑠 𝑛𝜋 = {
−1   𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛 

1       𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑛
= (−1)𝑛] 

𝑏𝑛 = {

4𝑘

𝑛𝜋
𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛

0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑛
  

∴ 𝑏1 =
4𝑘

𝜋
 ,      𝑏2 = 0,      𝑏3 =

4𝑘

3𝜋
 ,      𝑏4 = 0,      𝑏4 =

4𝑘

5𝜋
 ,     … 

 

Step 5: Express the signal in the form of Fourier series. 

𝑓(𝑥) = 𝑎0 + ∑ (𝑎𝑛 cos 𝑛𝜔𝑥 + 𝑏𝑛 sin 𝑛𝜔𝑥)
∞
𝑛=1   

where  𝑎0 = 0,               𝑎𝑛 = 0,               𝑏𝑛 = {

4𝑘

𝑛𝜋
𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛

0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑛
  

𝑓(𝑥) = 𝑎0 + (𝑎1 cos 𝑥 + 𝑏1 sin 𝑥) + (𝑎2 cos 2𝑥 + 𝑏2 sin 2𝑥) + (𝑎3 cos 3𝑥 + 𝑏3 sin 3𝑥) + 

                 +(𝑎4 cos 4𝑥 + 𝑏4 sin4𝑥) + ⋯ 

∴  𝑓(𝑥) =
4𝑘

𝜋
sin 𝑥 +

4𝑘

3𝜋
sin 3𝑥 +

4𝑘

5𝜋
sin 5𝑥 +

4𝑘

7𝜋
sin 7𝑥… 

Comment: The complicated square function with period of 𝑝 = 2𝜋  is the linear superposition 
result of multiple sine waves with odd frequencies.  
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10.4 APPLICATION OF FOURIER SERIES #1: PLOTTING A PERIODIC FUNCTION 

Previously, we demonstrated that a periodical square function can be represented in the form of 

Fourier series as follows.  

 𝑓(𝑥) = {
−𝑘     if  − 𝜋 < 𝑥 < 0 

𝑘       if   0 < 𝑥 < 𝜋
       and 𝑓(𝑥) = 𝑓(𝑥 + 𝑛(2𝜋)) where 𝑛 = 1,2,… ,∞       

 

𝑓(𝑥) =
4𝑘

𝜋
sin𝑥 +

4𝑘

3𝜋
sin 3𝑥 +

4𝑘

5𝜋
sin 5𝑥 +

4𝑘

7𝜋
sin7𝑥 +⋯ 

 

In fact, we can use the Fourier series expression to plot the periodic square function.  

Partial 
Summation, 

𝑆𝑛 

Approximation to 𝒇(𝒙) 

𝑓(𝑥) ≈ 𝑆𝑛 

Graphical representation 

𝑆1 
𝑆1 =

4𝑘

𝜋
sin 1𝑥 

 

Poor approximation to rectangular wave 

𝑆2 
𝑆2 =

4𝑘

𝜋
sin1𝑥 +

4𝑘

3𝜋
sin3𝑥 

 

𝑆3 
𝑆3 =

4𝑘

𝜋
sin1𝑥 +

4𝑘

3𝜋
sin3𝑥

+
4𝑘

5𝜋
sin 5𝑥 

 

⋮ ⋮ ⋮ 

𝑆20 
𝑆20 =

4𝑘

𝜋
sin 1𝑥 +

4𝑘

3𝜋
sin 3𝑥

+
4𝑘

5𝜋
sin 5𝑥 +⋯

+
4𝑘

39𝜋
sin 39𝑥  

Good approximation to rectangular wave 

Comment: In common practice, partial summation of 20 terms is used to give a good approximation 

of a periodic signal. If higher accuracy is needed, the number of terms will be increased. 

[Fourier series] 

[Periodic square wave] 
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10.5 APPLICATION OF FOURIER SERIES #2: DECOMPOSE A PERIODIC FUNCTION 

INTO MULTIPLE SINUSOIDAL WAVES WITH VARIOUS FREQUENCIES 

The Fourier series of a rectangular wave with amplitude = 1 is given as follows. 

 𝑓(𝑥) = {
−1     if  − 𝜋 < 𝑥 < 0 

1       if   0 < 𝑥 < 𝜋
       and 𝑓(𝑥) = 𝑓(𝑥 + 𝑛(2𝜋)) where 𝑛 = 1,2,… ,∞       

 

𝑓(𝑥) =
4

𝜋
sin𝑥 +

4

3𝜋
sin 3𝑥 +

4

5𝜋
sin 5𝑥 +

4

7𝜋
sin7𝑥 … 

 

 

 

 

 

 

 

Question: What is the frequency contaminated in the rectangular wave with amplitude = 1? 

Solution:  Based on the Fourier series result above, the Fourier series decomposed the rectangular 

wave into linear superposition of multiple sine functions with odd-integer harmonic angular frequency. 

In other words, the rectangular wave contains infinity number of odd-integer harmonic angular 

frequency. 

(i.e. First or fundamental harmonic (1x) frequency = 𝜔1 = 1𝑟𝑎𝑑𝑠
−1 ; Second harmonic (2x) frequency = 

𝜔2 = 3𝑟𝑎𝑑𝑠
−1 , …) 

 

Time Domain Perspective of  
𝑓(𝑥) ≈ 𝑆𝑛 

Frequency Domain Perspective of 

 𝑓(𝑥) = 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑤𝑎𝑣𝑒 

 

 

 

 

 
Comment: 𝑆4 indicates the 4 terms summation 
result, i.e. the approximation of 𝑓(𝑥) by partial 
summation. 

The frequency components of the 𝑓(𝑥) can be 
represented by the following figure. 

 

-1 

1 

[Fourier series] 

Period, p 

… … 

𝑆1 

𝑆2 

𝑆3 

𝑆4 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑟𝑎𝑑𝑠−1) 

1 3 5 7 

4

𝜋
 4

3𝜋
 

4

5𝜋
 

4

7𝜋
 … 

… 

𝑎
𝑚
𝑝
𝑙𝑖
𝑡𝑢
𝑑
𝑒
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Graphical representation of the time & frequency domains perspective of 𝑓(𝑥) and the decomposed 

components of the Fourier series (i.e. 𝑆𝐹1, 𝑆𝐹2, 𝑆𝐹3, …). 

 

Figure 10.5: Time and Frequency domains of a periodical rectangular wave 

 

Background: Joseph Fourier (1822) states that a time signal can be decomposed not only in time 

domain in terms of a sequence of sinusoidal waves, but also in frequency domain as 

well in terms of different frequency components. This idea makes a huge impacts and 

give innovation of many inclusive ideas in various engineering applications including 

vibration analysis, electrical analysis, acoustic analysis, image processing such as 

image compression, signal processing, quantum mechanics, etc. The first intention of 

Fourier’s work is to solve the heat diffusion or transient heat conduction model by using 

the Fourier series approach. Later, his work directly influenced and inspired others to 

use similar approach to describe other dynamic physical systems. 
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10.6 APPLICATION OF FOURIER SERIES #3: TO OBTAIN FINITE RESULT OF A SERIES 

It is difficult to determine the result of a series, e.g. what is the result of the series below?  

1 −
1

3
+
1

5
−
1

7
+⋯ =? 

 

Or in some cases, you might wonder how a famous series was formed or proven, e.g. 

Leibniz series: ∑
(−1)𝑛

2𝑛+1
∞
𝑛=0 =

𝜋

4
 

 

In this section, we will demonstrated how to use Fourier series to find/ prove the finite result of a particular 

series. For example, the Fourier series of the periodical rectangular wave is given. 

 

∴ 𝑓(𝑥) =
4𝑘

𝜋
sin 𝑥 +

4𝑘

3𝜋
sin 3𝑥 +

4𝑘

5𝜋
sin 5𝑥 +

4𝑘

7𝜋
sin 7𝑥 +… 

 

Try to substitute various 𝑥 to the Fourier series above: 

First Attempt, let x=𝝅 𝟒⁄ : 

𝑥 LHS OF 𝑓(𝑥) RHS OF 𝑓(𝑥) 

𝜋

4
 

𝑓 (
𝜋

4
) = 𝑘 

4𝑘

𝜋
sin
𝜋

4
+
4𝑘

3𝜋
sin (3

𝜋

4
) +

4𝑘

5𝜋
sin (5

𝜋

4
) +

4𝑘

7𝜋
sin (7

𝜋

4
) +⋯ 

=
4𝑘

𝜋
(0.707) +

4𝑘

3𝜋
(0.707) +

4𝑘

5𝜋
(−0.707) +

4𝑘

7𝜋
(−0.707)+⋯ 

LHS = RHS 

𝑘 =
4𝑘

𝜋
(0.707) +

4𝑘

3𝜋
(0.707) +

4𝑘

5𝜋
(−0.707) +

4𝑘

7𝜋
(−0.707)+⋯ 

We obtain a new series, where 

1 =
4

𝜋
(0.707) +

4

3𝜋
(0.707) +

4

5𝜋
(−0.707) +

4

7𝜋
(−0.707)+⋯ 

Rearrange, 

𝜋

4
= (0.707) +

1

3
(0.707) +

1

5
(−0.707) +

1

7
(−0.707)+⋯ 

 

 

 

… … 

(Problem 1) 

(Problem 2) 
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Second attempt, let x=𝝅 𝟐⁄ : 

𝑥 LHS OF 𝑓(𝑥) RHS OF 𝑓(𝑥) 

𝜋

2
 

𝑓 (
𝜋

2
) = 𝑘 

4𝑘

𝜋
sin
𝜋

2
+
4𝑘

3𝜋
sin (3

𝜋

2
) +

4𝑘

5𝜋
sin (5

𝜋

2
) +

4𝑘

7𝜋
sin (7

𝜋

2
) +⋯ 

LHS = RHS 

𝑘 =
4𝑘

𝜋
(1) +

4𝑘

3𝜋
(−1) +

4𝑘

5𝜋
(1) +

4𝑘

7𝜋
(−1) +⋯ 

We obtain a new series, where 

1 =
4

𝜋
−
4

3𝜋
+
4

5𝜋
−
4

7𝜋
+⋯ 

Rearrange it, we obtain 

𝜋

4
= 1 −

1

3
+
1

5
−
1

7
+⋯ 

 

Third attempt, let x=𝟗𝝅 𝟓⁄ : 

𝑥 LHS OF 𝑓(𝑥) RHS OF 𝑓(𝑥) 

9𝜋

5
 

𝑓 (
9𝜋

5
) = −𝑘 

4𝑘

𝜋
sin
9𝜋

5
+
4𝑘

3𝜋
sin (3

9𝜋

5
) +

4𝑘

5𝜋
sin (5

9𝜋

5
) +

4𝑘

7𝜋
sin (7

9𝜋

5
) +⋯ 

LHS = RHS 

−𝑘 =
4𝑘

𝜋
(−0.588) +

4𝑘

3𝜋
(−0.951) +

4𝑘

5𝜋
(0) +

4𝑘

7𝜋
(0.951) + ⋯ 

We obtain a new series, where 

−1 =
4

𝜋
(−0.588) +

4

3𝜋
(−0.951) +

4

7𝜋
(0.951) +⋯ 

Rearrange it, we obtain  

𝜋

4
= (0.588) +

1

3
(0.951) −

1

7
(0.951) +⋯ 

Think: You have tried 3 attempts and produce three new series from the Fourier series. In fact, you 

can produce infinite types of series based on the Fourier series result. Tried to link the attempt to the 

Problem 1 & Problem 2. 

Solution to Problem 1: By selecting appropriate x such as the one in  2nd attempt, we obtain 

1 −
1

3
+
1

5
−
1

7
+⋯ =

𝜋

4
  

Solution to Problem 2:  LHS of Leibniz series: ∑
(−1)𝑛

2𝑛+1
∞
𝑛=0 = 1−

1

3
+
1

5
−
1

7
+⋯ =

𝜋

4
  (Proven) 

Extra info: Leibniz series is named after Gottfried Leibniz who succeed to discover 𝜋 in series format, i.e. 

                        𝜋 = 4∑
(−1)𝑛

2𝑛+1
= 4 −

4

3
+
4

5
−
4

7
+⋯∞

𝑛=0  . So far, there is no series expression yet for the 

imaginary number, 𝑖. Perhaps anyone here can express it using this approach? Think about 
discover it, and one day you might put your big name to those unnamed series.  
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10.7 FOURIER COSINE SERIES & FOURIER SINE SERIES 

The equations for the Fourier Cosine Series & Fourier Sine Series are given below: 

 

(i) Fourier Cosine Series: 

𝑓𝑐(𝑥) = 𝑎0⏟
𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

+ ∑(𝑎𝑛 cos𝑛𝜔𝑥)

∞

𝑛=1⏟          
𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

 

where    𝑎0 =
1

2𝐿
∫ 𝑓(𝑥) 𝑑𝑥
𝐿

−𝐿
 

                          𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑐𝑜𝑠 𝑛𝜔𝑥  𝑑𝑥
𝐿

−𝐿
 

                          𝜔 =
2𝜋

𝑝
=
𝜋

𝐿
 

 

(ii) Fourier Sine Series: 

𝑓𝑠(𝑥) = ∑(𝑏𝑛 sin𝑛𝜔𝑥)

∞

𝑛=1⏟          
𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 

where   𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝜔𝑥  𝑑𝑥
𝐿

−𝐿
  

 

Note that we will obtain Fourier series by the summation of the Fourier Cosine series and Fourier Sine 

series. In other words, Fourier series is formed by Fourier Cosine series and Fourier Sine series. 

 

𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓(𝑥) = 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓𝑐(𝑥) + 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑆𝑖𝑛𝑒 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓𝑠(𝑥) 

 

Note 1: There is one important characteristic that is possessed by the Fourier Cosine series and 

Fourier Sine series that we must understand, i.e. Odd and Even function, which will be discussed in 

the next section. 

Note 2: 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓𝑐(𝑥) is an even function 

Note 3: 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑆𝑖𝑛𝑒 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓𝑠(𝑥) is an odd function 
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10.8 EVEN FUNCTION AND ODD FUNCTION 

The definitions of the even and odd functions are given below: 

EVEN FUNCTION ODD FUNCTION 

Mathematical definition: 

𝑓(−𝑡) =  𝑓(𝑡) 

Mathematical definition: 

𝑓(−𝑡) = − 𝑓(𝑡) 

 

Graphical representation of  𝑓(𝑡): 

 

Graphical representation of  𝑓(𝑡): 

 

Example: Cosine function is an even function 
because it satisfies  

𝑓(−𝑡) =  𝑓(𝑡) 

where 

𝑐𝑜𝑠(−𝑡) =  𝑐𝑜𝑠(𝑡) 

 

Eg.  

𝑐𝑜𝑠(−300) =  𝑐𝑜𝑠(300) = 0.866 

 

Example: Sine function is an odd function 
because it satisfies  

𝑓(−𝑡) =  − 𝑓(𝑡) 

where 

𝑠𝑖𝑛(−𝑡) =  − 𝑠𝑖𝑛(𝑡) 

 

Eg.  

𝑠𝑖𝑛(−300) =  − 𝑠𝑖𝑛(300) = −0.5 

 

Graphical representation of cosine function: 

          

 

 

 

 

 

 

Graphical representation of sine function: 

 

Observation 1: For even function, the y axis acts like a mirror to copy data from +𝑡 to −𝑡 domain. 

Observation 2: For odd function, the y axis acts like an upside-down mirror to copy data from +𝑡 to 

−𝑡 domain in an upside-down manner.  

Exercise: Identify if tangent function, Fourier Sine series and Fourier Cosine series are even or odd 

function by using the definition above. 

−300 300 −300 300 
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Important characteristics of even and odd functions: 

Total area under the even function graph Total area under the odd function graph 

Total area from – 𝑎 to 𝑎 for even function: 

 

Total area,  ∫ 𝑓(𝑡)
𝑎

−𝑎
𝑑𝑡 = 𝐴𝑟𝑒𝑎 1 + 𝐴𝑟𝑒𝑎 2 

                                   = 2 𝑥 𝐴𝑟𝑒𝑎 2 

 

Characteristic of even function: 

∫ 𝑓(𝑡)
𝑎

−𝑎

𝑑𝑡 = 2∫ 𝑓(𝑡)
𝑎

0

𝑑𝑡 

Total area from – 𝑎 to 𝑎 for odd function: 

 

Total area,  ∫ 𝑓(𝑡)
𝑎

−𝑎
𝑑𝑡 = 𝐴𝑟𝑒𝑎 1 + 𝐴𝑟𝑒𝑎 2  

               = 0 

 

Characteristic of odd function: 

∫ 𝑓(𝑡)
𝑎

−𝑎

𝑑𝑡 = 0 

 

By learning the characteristic of the even and odd functions, we can simplify the calculation of Fourier 

series in some cases. For example: 

(i) If function 𝒇(𝒕) is not an even or odd function,  

Fourier series cannot be simplified to Fourier Cosine series or Fourier Sine series alone. It 

is a combination of both of them. 

                        𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓(𝑡) = 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓𝑐(𝑡) + 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑆𝑖𝑛𝑒 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓𝑠(𝑡) 

               = 𝑎0 + ∑ (𝑎𝑛 cos 𝑛𝜔𝑡 + 𝑏𝑛 sin 𝑛𝜔𝑡)
∞
𝑛=1   

 

(ii) If function 𝒇(𝒕) is an even function,  

Fourier series can be simplified to Fourier Cosine series  

                        𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓(𝑡) = 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓𝑐(𝑡) 

 = 𝑎0 +∑ (𝑎𝑛 cos 𝑛𝜔𝑡)
∞
𝑛=1   

 

(iii) If function 𝒇(𝒕) is an odd function,  

Fourier series can be simplified to Fourier Sine series  

                         𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓(𝑡) = 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑆𝑖𝑛𝑒 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓𝑠(𝑡) 

              = ∑ (𝑏𝑛 sin 𝑛𝜔𝑡)
∞
𝑛=1   

 

Note 1: Approach (i) is time consuming, followed by (ii) and (iii), as approach (i) needs to calculate 3 

unknowns (𝑎0, 𝑎𝑛 & 𝑏𝑛), while (ii)-(2 unknowns 𝑎0&𝑎𝑛) & (iii)-(1 unknown 𝑏𝑛).  

Note 2: This means that if we able to identify whether a function is an odd or even function. We can 

use the Fourier Cosine series or Fourier Sine series to make the calculation easier and faster. 

+𝑣𝑒 𝐴𝑟𝑒𝑎 1 

=-ve 

+𝑣𝑒 𝐴𝑟𝑒𝑎 2 

 𝐴𝑟𝑒𝑎 1 = 𝐴𝑟𝑒𝑎 2 

−𝑣𝑒 𝐴𝑟𝑒𝑎 1 

=-ve 

+𝑣𝑒 𝐴𝑟𝑒𝑎 2 

 𝐴𝑟𝑒𝑎 1 = 𝐴𝑟𝑒𝑎 2 
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Example 1: Previously we use Fourier series approach to find the series of a periodic rectangular wave. 

By learning the characteristic of the odd and even function, we can simplify the calculation using 

Fourier Cosine series or Fourier Sine series approaches as follows. 

𝑓(𝑥) = {
−1     if  − 𝜋 < 𝑥 < 0 

1       if   0 < 𝑥 < 𝜋
       and 𝑓(𝑥) = 𝑓(𝑥 + 𝑛(2𝜋)) where 𝑛 = 1,2,… ,∞       

 

 

 

 

 

 

 

 

𝑓(𝑥) = 𝑎0 +∑(𝑎𝑛 cos 𝑛𝜔𝑥 + 𝑏𝑛 sin 𝑛𝜔𝑥)

∞

𝑛=1

 

 

 

Comment: Based on the figure, 𝑓(𝑥) is an odd function because the f(x) axis acts like an upside- 
down mirror to copy data from +𝑡 to −𝑡 domain in an upside-down manner. 

Thus, 

𝑓(𝑥) = 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑆𝑖𝑛𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 = ∑(𝑏𝑛 sin 𝑛𝜔𝑥)

∞

𝑛=1

 

where  𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝜔𝑥  𝑑𝑥
𝐿

−𝐿
= {

4𝑘

𝑛𝜋
𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛

0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑛
 

 

 

𝑓(𝑥) =
4

𝜋
sin𝑥 +

4

3𝜋
sin 3𝑥 +

4

5𝜋
sin 5𝑥 +

4

7𝜋
sin7𝑥 … 

 

 

 

 

 

 

 

[Same answer as previous] 

[Fourier series approach] 

1 

Period, p 

… … 

-1 

[Odd Function- Fourier  Sine Series] 

approach] 
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Example 2:  

Find the Fourier series of the function  

𝑥 = {

0    𝑖𝑓  − 2 < 𝑥 < −1

𝑘    𝑖𝑓     − 1 < 𝑥 < 1

0    𝑖𝑓           1 < 𝑥 < 2

       & 𝑓(𝑥) = 𝑓(𝑥 + 𝑛(4)) where  𝑛 = 1,2,3,… 

 

Step 1: Extract all the important information from the figure. 

Period,  p= 4      ; Half period,  𝐿 = 2       

Angular frequency,  𝜔 =
2𝜋

4
=
𝜋

2
      ; Frequency, 𝑓 =

1

4
       

 

Step 2: Check if the function is solely an odd or even function or neither of them. 

Based on the figure, 𝑓(𝑥) is an even function because the 𝑓(𝑥) axis acts like a mirror to copy data 
from +𝑡 to −𝑡 domain. 

 

Step 3: Fourier Cosine series 
                        𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓(𝑥) = 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓𝑐(𝑥) 

 = 𝑎0 +∑ (𝑎𝑛 cos 𝑛𝜔𝑥)
∞
𝑛=1   

𝑎0 =
1

2𝐿
∫ 𝑓(𝑥) 𝑑𝑥
𝐿

−𝐿
=
1

4
∫ 𝑓(𝑥) 𝑑𝑥
2

−2
  

                                          =
1

4
(∫ 0 𝑑𝑥

−1

−2
+ ∫ 𝑘 𝑑𝑥

1

−1
+ ∫ 0 𝑑𝑥

2

1
)  

                                          =
𝑘

2
 

𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑐𝑜𝑠 𝑛𝜔𝑥  𝑑𝑥
𝐿

−𝐿
=
1

2
∫ 𝑓(𝑥) 𝑐𝑜𝑠 𝑛

𝜋

2
𝑥  𝑑𝑥

2

−2
  

                                                            =
1

2
(∫ 𝑘 𝑐𝑜𝑠 𝑛

𝜋

2
𝑥 𝑑𝑥

1

−1
) 

                                                            =
𝑘

2
[
𝑠𝑖𝑛𝑛

𝜋

2
𝑥

𝑛
𝜋

2

]
−1

1

      =
𝑘

𝑛𝜋
(𝑠𝑖𝑛𝑛

𝜋

2
− sin (−𝑛

𝜋

2
)) =

2𝑘

𝑛𝜋
𝑠𝑖𝑛 (𝑛

𝜋

2
) 

𝑎𝑛 = {
2𝑘 𝑛𝜋⁄ 𝑖𝑓 𝑛 = 1,  5,  9,  …

−2𝑘 𝑛𝜋⁄ 𝑖𝑓 𝑛 = 3,  7,  11,  …
  

 

 

 

Period, p 

… … 
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Example 3:  

Find the Fourier series of the function  

𝑓(𝑥) = {
−𝑘     if   − 2 < 𝑥 < 0 

𝑘       if   0 < 𝑥 < 2
  & 𝑓(𝑥) = 𝑓(𝑥 + 𝑛(4)) where  𝑛 = 1,2,3,… 

 

Solution: 

Step 1: Extract all the important information from the figure. 

Period,  p= 4      ; Half period,  𝐿 = 2       

Angular frequency,  𝜔 =
2𝜋

4
=
𝜋

2
      ; Frequency, 𝑓 =

1

4
       

 

Step 2: Check if the function is solely an odd or even functions or neither of them. 

Based on the figure, 𝑓(𝑥) is an odd function because the f(x) axis acts like a mirror to copy data 
from +𝑡 to −𝑡 domain. 

 

Step 3: Fourier Sine series 
𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓(𝑡) = 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑆𝑖𝑛𝑒 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑓𝑠(𝑡) 

                                        = ∑ (𝑏𝑛 sin𝑛𝜔𝑡)
∞
𝑛=1   

 

𝑏𝑛 =
1

2
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛

𝜋

2
𝑥  𝑑𝑥

2

−2
 ,where 𝑛 = 1,2,3,… 

       =
1

2
(∫ −𝑘 𝑠𝑖𝑛 𝑛

𝜋

2
𝑥 𝑑𝑥

0

−2
+ ∫ 𝑘 𝑠𝑖𝑛 𝑛

𝜋

2
𝑥 𝑑𝑥

2

0
)  

       =
−𝑘

2
[
−𝑐𝑜𝑠𝑛

𝜋

2
𝑥

𝑛
𝜋

2

]
−2

0

+
𝑘

2
[
−𝑐𝑜𝑠𝑛

𝜋

2
𝑥

𝑛
𝜋

2

]
0

2

  

       =
−𝑘

𝑛𝜋
(−cos 0 − (−𝑐𝑜𝑠 (−𝑛𝜋))) +

𝑘

𝑛𝜋
(cos (𝑛𝜋) − (−𝑐𝑜𝑠 0))  

       =
2𝑘

𝑛𝜋
(1 − 𝑐𝑜𝑠(𝑛𝜋))  

𝑏𝑛 = {
4𝑘 𝑛𝜋⁄ 𝑖𝑓 𝑛 = odd number

0 𝑖𝑓𝑛 = even number
 

 

∴  𝑓(𝑥) =
4𝑘

𝜋
sin 𝑥 +

4𝑘

3𝜋
sin 3𝑥 +

4𝑘

5𝜋
sin 5𝑥 +

4𝑘

7𝜋
sin 7𝑥 +⋯  ,where 𝑓(𝑥)  is valid for any interval 

−∞ ≤ 𝑥 ≤ ∞ 

Period, p 

… … 
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Example 4:  

Find the Fourier series of the function  

𝑢(𝑡) = {
0                if  − 𝐿 < 𝑡 < 0 

𝐸 sin𝜔𝑡        if   0 < 𝑡 < 𝐿
   & 𝑢(𝑡) = 𝑢(𝑡 + 𝑛 (

2𝜋

𝜔
)) where  𝑛 = 1,2,3,… 

 

 

Solution: 

Step 1: Extract all the important information from the figure. 

Period,  p=
2𝜋

𝜔
      ; Half period,  𝐿 =

𝜋

𝜔
       

Angular frequency,  𝜔 =
2𝜋

(
2𝜋

𝜔
)
= 𝜔      ; Frequency, 𝑓 =

1

(
2𝜋

𝜔
)
=

𝜔

2𝜋
       

 

Step 2: Check if the function is solely an odd or even function or neither of them. 

It is not an odd or even functions. 

 

Step 3: Fourier Series 

𝑢(𝑡) = 𝑎0 +∑ (𝑎𝑛 cos𝑛𝜔 𝑡 + 𝑏𝑛 sin 𝑛𝜔 𝑡)∞
𝑛=1   

𝑎0 =
1

2𝐿
∫ 𝑓(𝑡) 𝑑𝑡
𝐿

−𝐿
=

𝜔

2𝜋
∫ 𝐸 sin𝜔 𝑡 𝑑𝑡
𝐿

0
 =

𝜔

2𝜋
[
−𝐸𝑐𝑜𝑠𝜔𝑡

𝜔
]
0

𝐿
 =
𝜔

2𝜋
(
−𝐸𝑐𝑜𝑠𝜋

𝜔
−
−𝐸

𝜔
) =

𝐸

𝜋
 

𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑡) 𝑐𝑜𝑠 𝑛𝜔𝑡  𝑑𝑡
𝐿

−𝐿
  

       =
𝜔

𝜋
(∫ 𝐸 sin𝜔 𝑡 𝑐𝑜𝑠 𝑛𝜔𝑡 𝑑𝑡

𝐿

0
) 

       =
𝜔𝐸

𝜋

1

2
(∫ sin(1 + 𝑛)𝜔𝑡 +  sin(1 − 𝑛)𝜔𝑡 𝑑𝑡

𝐿

0
)  

For 𝑛 = 1,   𝑎1 =
𝜔𝐸

2𝜋
∫ sin(2𝜔𝑡) 𝑑𝑡 = 0
𝐿

0
 

For 𝑛 > 1, 

𝑎𝑛 =
𝜔𝐸

2𝜋
([
−cos (1+𝑛)𝜔𝑡

 (1+𝑛)𝜔
−
−cos (1−𝑛)𝜔𝑡

 (1−𝑛)𝜔
]
0

𝐿
) =

𝜔𝐸

2𝜋
(
−cos (1+𝑛)𝜋

 (1+𝑛)𝜔
+
cos (1−𝑛)𝜋

 (1−𝑛)𝜔
− (

−1

 (1+𝑛)𝜔
−

−1

 (1−𝑛)𝜔
))      

𝑎2 =
−2𝐸

3𝜋
   , 𝑎3 = 0, 𝑎4 =

−2𝐸

(3𝑥5)𝜋
, 𝑎5 = 0, 𝑎6 =

−2𝐸

(5𝑥7)𝜋
, … 

𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑡) 𝑠𝑖𝑛 𝑛𝜔𝑡 𝑑𝑡
𝐿

−𝐿
=
𝜔

𝜋
∫ 𝐸 sin𝜔 𝑡 𝑠𝑖𝑛 𝑛𝜔𝑡 𝑑𝑡
𝐿

0
 

                                                       =
𝜔

𝜋
∫ 𝐸

cos((1−𝑛)𝜔𝑡)−cos( (1+𝑛)𝜔𝑡)

2
𝑑𝑡

𝐿

0
  

Period, p 

… … 
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For 𝑛 = 1 

𝑏𝑛 =
𝜔

𝜋
∫ 𝐸

cos(0)−cos( (2)𝜔𝑡)

2
𝑑𝑡

𝐿

0
=
𝜔𝐸

2𝜋
[𝑡 −

𝑠𝑖𝑛 (2)𝜔𝑡

 (2)𝜔
]
0

𝐿
=
𝜔𝐸

2𝜋
(
𝜋

𝜔
−
sin(2)𝜋

 (2)𝜔
− (0 −

0

 (2)𝜔
)) =

𝐸

2
 

 

For 𝑛 > 1 

𝑏𝑛 =
𝜔𝐸

2𝜋
([
𝑠𝑖𝑛 (1−𝑛)𝜔𝑡

 (1−𝑛)𝜔
−
−𝑠𝑖𝑛 (1+𝑛)𝜔𝑡

 (1+𝑛)𝜔
]
0

𝐿
) =

𝜔𝐸

2𝜋
(
sin(1−𝑛)𝜋

 (1−𝑛)𝜔
+
sin (1+𝑛)𝜋

 (1+𝑛)𝜔
− (

0

 (1+𝑛)𝜔
−

0

 (1−𝑛)𝜔
))  

       =
𝜔𝐸

2𝜋
(
sin(1−𝑛)𝜋

 (1−𝑛)𝜔
+
sin (1+𝑛)𝜋

 (1+𝑛)𝜔
)  

𝑏2 =
𝜔𝐸

2𝜋
(
sin(−1)𝜋

 (−1)𝜔
+
sin (3)𝜋

 (3)𝜔
) = 0  

 

Since sin(1 − 𝑛)𝜋 = sin(1 + 𝑛)𝜋 = 0 for all 𝑛 > 1  

𝑏𝑛 = 0 for 𝑛 = 2,3,4,… 

 

∴ 𝑓(𝑡) =
𝐸

𝜋
+ (−

2𝐸

3𝜋
(𝑐𝑜𝑠2𝜔𝑡) −

2𝐸

(3𝑥5)𝜋
(𝑐𝑜𝑠4𝜔𝑡) −

2𝐸

(5𝑥7)𝜋
(𝑐𝑜𝑠6𝜔𝑡) + ⋯) +

𝐸

2
(𝑠𝑖𝑛𝜔𝑡)  

where 𝑓(𝑥) is valid for any interval −∞ ≤ 𝑥 ≤ ∞ 
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In summary, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.9 LINEARITY PROPERTY 

Linearity property is also known as sum and scalar multiple property. It can be applied to simplify 

the calculation of Fourier series in some cases. For example, 

 

(i) Fourier series  of a function #1, 𝑔(𝑥) is given: 

𝑔(𝑥) = 𝑎0,g + ∑ (𝑎𝑛,𝑔 cos 𝑛𝜔𝑥 + 𝑏𝑛,𝑔 sin 𝑛𝜔𝑥)
∞
𝑛=1   

 

(ii) Fourier series  of a function #2, ℎ(𝑥) is given: 

ℎ(𝑥) = 𝑎0,h + ∑ (𝑎𝑛,ℎ cos 𝑛𝜔𝑥 + 𝑏𝑛,ℎ sin 𝑛𝜔𝑥)
∞
𝑛=1   

 

(iii) If a function #3, 𝑓(𝑥) is comprised of 𝑔(𝑥) & ℎ(𝑥) through linear superposition: 

 

𝑓(𝑥) = 𝑚𝑔(𝑥) + 𝑛ℎ(𝑥) 

 

Then, its Fourier series coefficients can be obtained by linearity property: 

𝑓(𝑥) = 𝑎0,𝑓 +∑(𝑎𝑛,𝑓 cos 𝑛𝜔𝑥 + 𝑏𝑛,𝑓 sin𝑛𝜔𝑥)

∞

𝑛=1

 

 

Any periodic functions 

 (i.e. 𝑓(𝑥) = 𝑓(𝑥 + 𝑛𝑝); 

𝑤ℎ𝑒𝑟𝑒 𝑛 = 1,2,3,…𝑎𝑛𝑑 𝑝 = 𝑝𝑒𝑟𝑖𝑜𝑑) 

Fourier Series (arbitrary period of 𝑝=2𝐿) 
𝑓(𝑥) = 𝑎0 + ∑ (𝑎𝑛 cos 𝑛𝜔𝑥 + 𝑏𝑛 sin 𝑛𝜔𝑥)

∞
𝑛=1   

where 𝑎0 =
1

2𝐿
∫ 𝑓(𝑥) 𝑑𝑥
𝐿

−𝐿
;  

           𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑐𝑜𝑠 𝑛𝜔𝑥  𝑑𝑥
𝐿

−𝐿
;  

            𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝜔𝑥 𝑑𝑥
𝐿

−𝐿
; 

Fourier Cosine Series  
𝑓(𝑥) = 𝑎0 + ∑ (𝑎𝑛 cos 𝑛𝜔𝑥)

∞
𝑛=1   

where 𝑎0 =
1

2𝐿
∫ 𝑓(𝑥) 𝑑𝑥
𝐿

−𝐿
;  

           𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑐𝑜𝑠 𝑛𝜔𝑥  𝑑𝑥
𝐿

−𝐿
;  

Fourier Sine Series  
𝑓(𝑥) = ∑ (𝑏𝑛 sin𝑛𝜔𝑥)

∞
𝑛=1   

where 𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝜔𝑥 𝑑𝑥
𝐿

−𝐿
 

Hint: 𝜔 =
2𝜋

𝑝
=
𝜋

𝐿
 

If 𝑓(𝑥) = odd function If 𝑓(𝑥) = even function 

Important remark: 
The main function of 
Fourier series is to 
decompose the signal 
into infinite sinusoidal 
wave with various 
frequencies. 

The 𝑓(𝑥) is valid for 
any interval  
−∞ ≤ 𝑥 ≤ ∞  
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where   𝑎0,𝑓 = 𝑚𝑎0,𝑔 + 𝑛𝑎0,ℎ 

               𝑎𝑛,𝑓 = 𝑚𝑎𝑛,𝑔 + 𝑛𝑎𝑛,ℎ 

                 𝑏𝑛,𝑓 = 𝑚𝑏𝑛,𝑔 + 𝑛𝑏𝑛,ℎ 

 

Example: Find the Fourier series of the sawtooth wave 

 

𝑓(𝑥) = {𝑥 + 𝜋   if  − 𝜋 < 𝑥 < 𝜋 

and 

𝑓(𝑥) = 𝑓(𝑥 + 𝑛(2𝜋)) where 𝑛 = 1,2,… ,∞ 

 

Important parameters: 𝑝 = 2𝜋, 𝐿 = 𝜋,𝜔 =
2𝜋

2𝜋
= 1, 𝑓 =

1

2𝜋
 

 

Solution #1: Conventional Fourier Series Approach 

𝑓(𝑥) = 𝑎0 + ∑ (𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin𝑛𝑥)
∞
𝑛=1   

 

where 𝑎0 =
1

2𝜋
∫ 𝑓(𝑥) 𝑑𝑥
𝜋

−𝜋
=

1

2𝜋
∫ (𝑥 + 𝜋 )𝑑𝑥
𝜋

−𝜋
= 𝜋 

              𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥) 𝑐𝑜𝑠 𝑛𝑥  𝑑𝑥
𝜋

−𝜋
=
1

𝜋
∫ (𝑥 + 𝜋 ) 𝑐𝑜𝑠 𝑛𝑥  𝑑𝑥
𝜋

−𝜋
= 0   

              𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝑥  𝑑𝑥
𝜋

−𝜋
= −

2

𝑛
𝑐𝑜𝑠𝑛𝜋 = {

2

𝑛
𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛

−
2

𝑛
𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑛

  

Comment: Time consuming if integration of 𝑓(𝑥) is difficult. 

 

Solution #2: Solving Fourier Series using Linearity Property 

Observation: 𝑓(𝑥) = 𝑥 + 𝜋 is a linear superposition between function, 𝑥 & function 𝜋 with constant 
𝑚, 𝑛 = 1 

 

Hence, we can use linearity property to simplify the calculation. 

(i) Let 𝑔(𝒙) = 𝑥 
 

2𝜋 

… … 
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Since 𝑔(−𝑥) = −𝑔(𝑥), thus it is an Odd Function  and we can reduced Fourier series 
into Fourier Sine series. 
 

𝑔(𝒙) = Fourier Sine series = ∑(𝑏𝑛,𝑔 sin𝑛𝑥)

∞

𝑛=1

 

𝑏𝑛,𝑔 =
1

𝐿
∫ 𝑔(𝑥) 𝑠𝑖𝑛 𝑛𝑥  𝑑𝑥
𝐿

−𝐿

=
1

𝜋
∫ 𝑥. 𝑠𝑖𝑛 𝑛𝑥  𝑑𝑥
𝜋

−𝜋

 

 
Integration by part:  
 
Let  𝑢 = 𝑥; 𝑑𝑣 = 𝑠𝑖𝑛(𝑛𝑥) 𝑑𝑥  

𝑏𝑛,𝑔 = [𝑥 (
−cos (𝑛𝜋)

𝑛
)]
−𝜋

𝜋
− ∫ (

−cos (𝑛𝜋)

𝑛
) 𝑑𝑥

𝜋

−𝜋
 

           = −
2

𝑛
𝑐𝑜𝑠𝑛𝜋 

 
(ii) Let ℎ(𝒙) = 𝜋 

 
Since ℎ(−𝜋) = ℎ(𝜋), thus it is an Even Function  and we can reduced Fourier series into 
Fourier Cosine series. 
 

ℎ(𝒙) = Fourier Cosine series = 𝑎0,ℎ +∑(𝑎𝑛,ℎ cos 𝑛𝑥)

∞

𝑛=1

 

𝑎0,ℎ =
1

2𝐿
∫ ℎ(𝑥) 𝑑𝑥
𝐿

−𝐿
=

1

2𝜋
∫ 𝜋 𝑑𝑥
𝜋

−𝜋
=

1

2𝜋
[𝜋𝑥]−𝜋

𝜋 = 𝜋 

𝑎𝑛,ℎ =
1

𝐿
∫ ℎ(𝑥) 𝑐𝑜𝑠 𝑛𝑥  𝑑𝑥
𝐿

−𝐿
=
1

𝜋
∫ 𝜋 𝑐𝑜𝑠 𝑛𝑥  𝑑𝑥
𝜋

−𝜋
=
1

𝜋
[
𝜋𝑠𝑖𝑛𝑛𝑥

𝑛
]
−𝜋

𝜋
=
2𝑠𝑖𝑛 (𝑛𝜋)

𝑛
= 0  

 
 

(iii) Since 𝑓(𝑥) = 𝑠𝑢𝑝𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔(𝒙) & ℎ(𝒙) = 𝑔(𝒙) + ℎ(𝒙), 
The Fourier coefficients of 𝑓(𝑥) can be obtained from linearity property. 

 𝑓(𝑥) = 𝑎0 + ∑ (𝑎𝑛 cos𝑛𝑥 + 𝑏𝑛 sin𝑛𝑥)
∞
𝑛=1   

where 

 𝑎0 = 𝑎0,ℎ + 𝑎0,𝑔 = 𝜋 + 0 = 𝜋 

𝑎𝑛 = 𝑎𝑛,ℎ + 𝑎𝑛,𝑔 = 0 + 0 = 0 

𝑏𝑛 = 𝑏𝑛,ℎ + 𝑏𝑛,𝑔 = 0 + (−
2

𝑛
𝑐𝑜𝑠𝑛𝜋) = −

2

𝑛
𝑐𝑜𝑠𝑛𝜋 

 

Final Solution: 

𝑓(𝑥) = 𝜋 + ∑ (−
2

𝑛
𝑐𝑜𝑠𝑛𝜋 sin𝑛𝑥)∞

𝑛=1   

𝑤ℎ𝑒𝑟𝑒 cos 𝑛𝜋 = {
−1   for odd 𝑛 

1       for even 𝑛,
 

∴ 𝑓(𝑥) = 𝜋 + 2(sin 𝑥 −
1

2
sin 2𝑥 +

1

3
sin 3𝑥 +⋯) 
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10.10 APPLICATION OF FOURIER SERIES #4: TO SOLVE NON-HOMOGENEOUS ODE 

WITH PERIODIC EXCITATION 

Previously, we demonstrated the way to solve nonhomogeneous ODE with various types of 

excitations such as impulse function, unit step function, trigonometric function, exponential function, 

polynomial function and etc. In this section, we will demonstrate how to solve the nonhomogeneous 

ODE with periodic function. 

 

For example, find the response solution of the mechanical system due to the periodic rectangular 

wave excitation below. 

 

10
𝑑2𝑥

𝑑𝑡2
+ 0.5

𝑑𝑥

𝑑𝑡
+ 250𝑥 = 𝑃(𝑡) 

… … 
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where 𝑃(𝑡) = {
10 0 ≤ 𝑡 ≤ 𝜋
−10 𝜋 ≤ 𝑡 ≤ 2𝜋

  &  𝑃(𝑡) = 𝑃(𝑡 + 2𝜋𝑛). The initial conditions are zero. 

 

Step 1: Retrieve all important parameter from the periodic function 

 

 

𝑝 = 2𝜋,  𝐿 = 𝜋, 𝜔 =
2𝜋

2𝜋
= 1, 𝑓 =

1

2𝜋
 

 

Step 2: Find the Fourier series expression of the periodic function. 

Observation: Since the right side of the figure is upside down to the left side of the figure, it is an 
odd function. Therefore, the Fourier series expression can be simplified as the Fourier Sine series. 

 

 

 

Fourier Sine series 
𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑃(𝑡) = 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑆𝑖𝑛𝑒 𝑠𝑒𝑟𝑖𝑒𝑠, 𝑃𝑠(𝑡) 

                                        = ∑ (𝑏𝑛 sin𝑛𝜔𝑡)
∞
𝑛=1   

 

𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝜔𝑥  𝑑𝑥
𝐿

−𝐿
=
1

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝜔𝑥  𝑑𝑥
2𝐿

0
 ,where 𝑛 = 1,2,3,… 

       =
1

𝜋
[∫ 10 𝑠𝑖𝑛 𝑛𝑥  𝑑𝑥
𝜋

0
+ ∫ −10 𝑠𝑖𝑛 𝑛𝑥  𝑑𝑥

2𝜋

𝜋
] ,where 𝑛 = 1,2,3,… 

       =
10

𝜋
[
−𝑐𝑜𝑠𝑛𝑥

𝑛
]
0

𝜋
+
10

𝜋
[
+𝑐𝑜𝑠𝑛𝑥

𝑛
]
𝜋

2𝜋
  

       =
10

𝑛𝜋
(−cos 𝑛𝜋 − (−𝑐𝑜𝑠 0)) +

10

𝑛𝜋
(cos (2𝑛𝜋) − (𝑐𝑜𝑠 𝑛𝜋))  

       =
10

𝑛𝜋
(2 − 2𝑐𝑜𝑠(𝑛𝜋))  

      =
20

𝑛𝜋
(1 − 𝑐𝑜𝑠(𝑛𝜋))  

𝑏𝑛 = {
40 𝑛𝜋⁄ 𝑖𝑓 𝑛 = odd number

0 𝑖𝑓𝑛 = even number
 

 

∴  𝑃(𝑡) =
40

𝜋
sin 𝑡 +

40

3𝜋
sin 3𝑡 +

40

5𝜋
sin 5𝑡 +

40

7𝜋
sin7𝑡 + ⋯ =   

where 𝑓(𝑡) is valid for any interval −∞ ≤ 𝑡 ≤ ∞ 

… … 

period 
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Step 3: Linear Superposition Concept 

 

 

 

 

 

 

 

 

 

 

We can simplify the input force as  𝑃(𝑡) = ∑
40

(2𝑛−1)𝜋
sin((2𝑛 − 1) 𝑡)∞

𝑛=1   

As a rule of thumb, 𝑃(𝑡) ≈ 𝑃1(𝑡)+𝑃2(𝑡)+⋯+𝑃20(𝑡) 

 

 

 

 

 

Step 4: Solve the ODE using method of Undetermined Coefficient (Recall Math 1) 

10
𝑑2𝑥

𝑑𝑡2
+ 0.5

𝑑𝑥

𝑑𝑡
+ 250𝑥 = 𝑃(𝑡) 

 

where 𝑃(𝑡) represents the external forcing function, which is a periodic function.   

 

The total solution,  𝑥𝑡𝑜𝑡𝑎𝑙 =  𝑥𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 +  𝑥𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟  

where the complementary solution,  𝑥𝑐  can be obtained from the homogeneous part of the ODE 
while the particular solution can be obtained from the non-homogeneous part of the ODE. 

Note: Complementary solution is also known as transient solution while the particular solution is 
also known as steady state solution. 

 

Step 4.1: Solving the homogeneous part of the ODE  

10
𝑑2𝑥

𝑑𝑡2
+ 0.5

𝑑𝑥

𝑑𝑡
+ 250𝑥 = 0  

Assume the complementary solution is in the form of  𝑥𝑐  = 𝑒
𝑚𝑡 

Then, we obtain the characteristic equation, 10𝑚2 + 0.5𝑚 + 250 = 0 

System modeling  

𝑚�̈� + 𝑐�̇� + 𝑘𝑦 = 𝑃1(𝑡) + 𝑃2(𝑡) + ⋯+ 𝑃∞(𝑡) 

 

 

 

𝑃(𝑡) =
40

𝜋
sin 𝑡 +

40

3𝜋
sin 3𝑡 +

40

5𝜋
sin 5𝑡 +

40

7𝜋
sin 7𝑡 + ⋯ 

(Multiple sinusoidal forces 

acting simultaneously) 

(Total responses can be obtained 

by linear superposition) 
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𝑚 = −
1

40
± 𝑖

√39999

40
  

The complementary solution,  𝑥𝑐 = 𝑐1𝑒
(−

1

40
+𝑖
√39999

40
)𝑡
+ 𝑐2𝑒

(−
1

40
−𝑖
√39999

40
)𝑡

  

Or it can be represented in the trigonometric format  𝑥𝑐 = 𝑒
−
1

40
𝑡 (𝑐1𝑐𝑜𝑠

√39999

40
𝑡 + 𝑐2𝑠𝑖𝑛

√39999

40
𝑡)  

 

Given that the initial condition is zero,  𝑥𝑐(0) = 0 &  �̇�𝑐(0) = 0 

 𝑥𝑐(0) = 𝑒
−
1

40
(0) (𝑐1𝑐𝑜𝑠

√39999

40
(0) + 𝑐2𝑠𝑖𝑛

√39999

40
(0))  = 𝑐1 = 0     

Thus,  𝑥𝑐 = 𝑒
−
1

40
𝑡 (𝑐2𝑠𝑖𝑛

√39999

40
𝑡)  

 �̇�𝑐 = −
1

40
𝑒−

1

40
𝑡 (𝑐2𝑠𝑖𝑛

√39999

40
𝑡) + 𝑒−

1

40
𝑡 (𝑐2

√39999

40
𝑐𝑜𝑠

√39999

40
𝑡)  

 �̇�𝑐(0) = −
1

40
𝑒−

1

40
(0) (𝑐2𝑠𝑖𝑛

√39999

40
(0)) + 𝑒−

1

40
(0) (𝑐2

√39999

40
𝑐𝑜𝑠

√39999

40
(0)) = 𝑐2

√39999

40
= 0  

𝑐2 = 0     

 

For zero initial condition, the complementary solution,  𝑥𝑐 = 0 

 

 

 

 

 

Step 4.2: Solving the non-homogeneous part of the ODE  

10
𝑑2𝑥

𝑑𝑡2
+ 0.5

𝑑𝑥

𝑑𝑡
+ 250𝑥 = ∑

40

(2𝑛−1)𝜋
𝑠𝑖𝑛((2𝑛 − 1) 𝑡)∞

𝑛=1   

 

Based on the RHS function (i.e. a periodic function), the possible particular solution is proposed in 
the form of Fourier series: 

 

RHS function Possible Particular Solution  
𝑦𝑝 

(i) Periodic Function, 
 e.g. 
A rectangular wave function 
 

𝑃(𝑡) = {
10 0 ≤ 𝑡 ≤ 𝜋
−10 𝜋 ≤ 𝑡 ≤ 2𝜋

 

𝑥𝑝 = 𝑎0 +∑(𝑎𝑛 cos 𝑛𝜔𝑡 + 𝑏𝑛 sin𝑛𝜔𝑡)

∞

𝑛=1

 

 
where 𝑎𝑂 , 𝑎𝑛 & 𝑏𝑛 are the three unknowns (also known as 
undetermined coefficient) to be solved. 
 

Example: 
 

𝑥𝑝 = 𝑎0 +∑(𝑎𝑛 cos((2𝑛 − 1)𝑡) + 𝑏𝑛 sin((2𝑛 − 1)𝑡))

∞

𝑛=1
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𝑃(𝑡)

= ∑
40

(2𝑛 − 1)𝜋
sin ((2𝑛 − 1) 𝑡)

∞

𝑛=1

 

 

Comment: No treatment is needed after we compare the 
coefficients obtained from the homogeneous and non-
homogeneous parts of ODE. 

(2𝑛 − 1) ≠ −
1

40
± 𝑖

√39999

40
  

 

 Differentiate the particular solution,  

𝑥′𝑝 = 0 +∑(−(2𝑛 − 1)𝑎𝑛 sin((2𝑛 − 1)𝑡) + (2𝑛 − 1)𝑏𝑛 cos((2𝑛 − 1)𝑡))

∞

𝑛=1

 

𝑥′′𝑝 =∑(−(2𝑛 − 1)2𝑎𝑛 cos((2𝑛 − 1)𝑡) − (2𝑛 − 1)
2𝑏𝑛 sin((2𝑛 − 1)𝑡))

∞

𝑛=1

 

 

 Substitute to the ODE  

10
𝑑2𝑥

𝑑𝑡2
+ 0.5

𝑑𝑥

𝑑𝑡
+ 250𝑥 = ∑

40

(2𝑛 − 1)𝜋
sin((2𝑛 − 1) 𝑡)

∞

𝑛=1

 

10 [∑(−(2𝑛 − 1)2𝑎𝑛 cos((2𝑛 − 1)𝑡) − (2𝑛 − 1)
2𝑏𝑛 sin((2𝑛 − 1)𝑡))

∞

𝑛=1

] 

+0.5 [∑(−(2𝑛 − 1)𝑎𝑛 sin((2𝑛 − 1)𝑡) + (2𝑛 − 1)𝑏𝑛 cos((2𝑛 − 1)𝑡))

∞

𝑛=1

] 

+250 [𝑎0 +∑(𝑎𝑛 cos((2𝑛 − 1)𝑡) + 𝑏𝑛 sin((2𝑛 − 1)𝑡))

∞

𝑛=1

] = ∑
40

(2𝑛 − 1)𝜋
sin((2𝑛 − 1) 𝑡)

∞

𝑛=1

 

 

 

 Rearrange,  

∑((−10)(2𝑛 − 1)2𝑎𝑛 cos((2𝑛 − 1)𝑡) + (0.5)(2𝑛 − 1)𝑏𝑛 cos((2𝑛 − 1)𝑡) + 250𝑎𝑛 cos((2𝑛 − 1)𝑡))

∞

𝑛=1

 

+∑((−10)(2𝑛 − 1)2𝑏𝑛 sin((2𝑛 − 1)𝑡) − (0.5)(2𝑛 − 1)𝑎𝑛 sin((2𝑛 − 1)𝑡) + 250𝑏𝑛 sin((2𝑛 − 1)𝑡))

∞

𝑛=1

 

+250𝑎0 = ∑
40

(2𝑛 − 1)𝜋
sin((2𝑛 − 1) 𝑡)

∞

𝑛=1

 

 

 Compare coefficient of 𝑡0:     

250𝑎0 = 0 

Thus, 𝑎0 = 0 

 

 Compare coefficient of cos((2𝑛 − 1)𝑡):     

(−10)(2𝑛 − 1)2𝑎𝑛 + (0.5)(2𝑛 − 1)𝑏𝑛 + 250𝑎𝑛 = 0 

𝑏𝑛 =
(10)(2𝑛 − 1)2 − 250

(0.5)(2𝑛 − 1)
𝑎𝑛 



30 
 

 

where 𝑛 = 1,2,3, … 

 

 Compare coefficient of sin((2𝑛 − 1)𝑡):     

(−10)(2𝑛 − 1)2𝑏𝑛 − (0.5)(2𝑛 − 1)𝑎𝑛 + 250𝑏𝑛 =
40

(2𝑛 − 1)𝜋
 

[(−10)(2𝑛 − 1)2 + 250]𝑏𝑛 − (0.5)(2𝑛 − 1)𝑎𝑛 =
40

(2𝑛 − 1)𝜋
 

[(−10)(2𝑛 − 1)2 + 250] [
(10)(2𝑛 − 1)2 − 250

(0.5)(2𝑛 − 1)
𝑎𝑛] − (0.5)(2𝑛 − 1)𝑎𝑛 =

40

(2𝑛 − 1)𝜋
 

[(−10)(2𝑛 − 1)2 + 250][(10)(2𝑛 − 1)2 − 250]𝑎𝑛 − (0.5)
2(2𝑛 − 1)2𝑎𝑛 =

20

𝜋
 

𝑎𝑛 =
20

𝜋([(−10)(2𝑛 − 1)2 + 250][(10)(2𝑛 − 1)2 − 250] − (0.5)2(2𝑛 − 1)2)
 

𝑎𝑛 =
20

𝜋([(−100)(2𝑛 − 1)4 + (5000)(2𝑛 − 1)2 − 62500] − (0.5)2(2𝑛 − 1)2)
 

𝑎𝑛 =
20

𝜋((−100)(2𝑛 − 1)4 + (4999.75)(2𝑛 − 1)2 − 62500)
 

where 𝑛 = 1,2,3, … 

 

𝑏𝑛 =
(10)(2𝑛 − 1)2 − 250

(0.5)(2𝑛 − 1)

20

𝜋((−100)(2𝑛 − 1)4 + (4999.75)(2𝑛 − 1)2 − 62500)
 

 

 Thus, the particular solution 

𝑥𝑝 = 𝑎0 +∑(𝑎𝑛 cos(2𝑛 − 1)𝑡 + 𝑏𝑛 sin(2𝑛 − 1)𝑡)

∞

𝑛=1

 

= ∑

(

 
 

20

𝜋((−100)(2𝑛 − 1)4 + (4999.75)(2𝑛 − 1)2 − 62500)
cos(2𝑛 − 1)𝑡

+
(10)(2𝑛 − 1)2 − 250

(0.5)(2𝑛 − 1)

20

𝜋((−100)(2𝑛 − 1)4 + (4999.75)(2𝑛 − 1)2 − 62500)
sin(2𝑛 − 1)𝑡

)

 
 

∞

𝑛=1

 

 
An approximation of the solution is given by linear superposition of the first 5 terms response solution.  

Term
, 𝑛 

Particular solution due to 𝑛𝑡ℎ forcing function Observation 

1 𝑥𝑝,1 = −1.10524𝑥10
−4𝑐𝑜𝑠𝑡 + 0.0531𝑠𝑖𝑛𝑡 

 

Magnitude,|𝑥𝑝,1| 

= √(−1.10524𝑥10−4)2 + (0.0531)2 
= 0.053 

2 𝑥𝑝,2 = −2.4866𝑥10
−4𝑐𝑜𝑠3𝑡 + 0.0265𝑠𝑖𝑛3𝑡 Magnitude,|𝑥𝑝,2| 

= √(−2.4866𝑥10−4)2 + (0.0265)2 
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= 0.027 

3 𝑥𝑝,3 = −1.0190𝑐𝑜𝑠5𝑡 + 0𝑠𝑖𝑛5𝑡 

 

Magnitude,|𝑥𝑝,3| 

= √(−1.0190)2 + (0)2 
= 1.0190 

4 𝑥𝑝,4 = −1.1050𝑥10
−4𝑐𝑜𝑠7𝑡 − 7.577𝑥10−3𝑠𝑖𝑛7𝑡 

 

Magnitude,|𝑥𝑝,4| 

= √
(−1.1050𝑥10−4)2

+(−7.577𝑥10−3)2
 

= 0.0076 

5 𝑥𝑝,5 = −2.0300𝑥10
−5𝑐𝑜𝑠9𝑡 − 2.526𝑥10−3𝑠𝑖𝑛9𝑡 

 

Magnitude,|𝑥𝑝,4| 

= √
(−2.0300𝑥10−5)2

+(−2.526𝑥10−3)2
 

= 0.0025 

⋮ ⋮ ⋮ 

∞ 𝑥𝑝 = 𝑥𝑝,1 + 𝑥𝑝,2 + 𝑥𝑝,3 + 𝑥𝑝,4 + 𝑥𝑝,5 +⋯𝑥𝑝,∞ 

 

Magnitude,|𝑥𝑝| 

|𝑥𝑝| = |𝑥𝑝,1| + |𝑥𝑝,2| + |𝑥𝑝,3| + ⋯ 

 |𝑥𝑝| ≈ |𝑥𝑝,3| 

 

Note that the total particular 
solution is dominated by the 3th term 
response. This is because the 3th 
forcing function has exciting 
frequency (𝜔 = 5)  equal to the 
natural frequency 

  (√
𝑘

𝑚
= √

250

10
= 5).  

Resonance occurs! 

 

Step 4.3:  𝑥𝑡𝑜𝑡𝑎𝑙 =  𝑥𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 +  𝑥𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟  
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 𝑥𝑡𝑜𝑡𝑎𝑙 = 0 + (−1.10524𝑥10
−4𝑐𝑜𝑠𝑡 + 0.0531𝑠𝑖𝑛𝑡) + (−2.4866𝑥10−4𝑐𝑜𝑠3𝑡 + 0.0265𝑠𝑖𝑛3𝑡)

+ (−1.0190𝑐𝑜𝑠5𝑡 + 0𝑠𝑖𝑛5𝑡) + (−1.1050𝑥10−4𝑐𝑜𝑠7𝑡 − 7.577𝑥10−3𝑠𝑖𝑛7𝑡)

+ (−2.0300𝑥10−5𝑐𝑜𝑠9𝑡 − 2.526𝑥10−3𝑠𝑖𝑛9𝑡) + 

(

 
 

20

𝜋((−100)(2𝑛 − 1)4 + (4999.75)(2𝑛 − 1)2 − 62500)
cos(2𝑛 − 1)𝑡

+
(10)(2𝑛 − 1)2 − 250

(0.5)(2𝑛 − 1)

20

𝜋((−100)(2𝑛 − 1)4 + (4999.75)(2𝑛 − 1)2 − 62500)
sin(2𝑛 − 1)𝑡

)

 
 
+⋯ 

where 𝑛 = 6,7,8, … 

 

Exercise:  

Repeat the example by letting the damping coefficient be zero. Observe the severity of the vibration 

level after the changes of parameters.  

10
𝑑2𝑥

𝑑𝑡2
+ 250𝑥 = 𝑃(𝑡) 

where 𝑃(𝑡) = {
10 0 ≤ 𝑡 ≤ 𝜋
−10 𝜋 ≤ 𝑡 ≤ 2𝜋

  &  𝑃(𝑡) = 𝑃(𝑡 + 2𝜋𝑛). The initial conditions are zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


