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WEEK 12: SOLVING GENERAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATION (PDE) 

12.1 GENERAL SOLUTION & PARTICULAR SOLUTION OF PDE 

In the differential equation chapter, you have learned how to differentiate between ODE and PDE and 

how to classify them in terms of the order, linearity, and homogeneity. In simple, PDE is an equation 

that involves partial derivatives (i.e. 𝜕 symbol). Recall that a linear PDE is homogeneous if each of its 

terms contains either 𝑢 or one of its partial derivatives on LHS while RHS=0. Otherwise, it is a non-

homogeneous PDE. In this study, we will only focus on solving the 2nd order linear homogeneous PDE 

problem with constant coefficients. 

The general equation is given below: 

𝐴
𝜕2𝑢

𝜕𝑥2
+ 𝐵

𝜕2𝑢

𝜕𝑥𝜕𝑡
+ 𝐶

𝜕2𝑢

𝜕𝑡2
+𝐷

𝜕𝑢

𝜕𝑥
+ 𝐸

𝜕𝑢

𝜕𝑡
+ 𝐹𝑢 = 0   , where 𝐴 − 𝐹 are constants. 

(i) The general PDE solution, i.e. 𝑢(𝑥, 𝑡) in terms of unknown coefficients can be obtained by using 

separable of variable method.  

For example:  𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) = ∑ 𝐴3,n 𝑐𝑜𝑠(𝑛𝜋𝑡)(𝑠𝑖𝑛(𝑛𝜋𝑥) )
∞
𝑛=1  

 

(ii) The particular PDE solution, i.e. 𝑢(𝑥, 𝑡)  in terms of known coefficients can be obtained by 

applying all the initial & boundary conditions, as well as the Fourier series expansion method.  

For example:  𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡)  = ∑ −
2𝑛𝜋𝑠𝑖𝑛𝑛𝜋+4𝑐𝑜𝑠𝑛𝜋−4

𝑛3𝜋3
𝑐𝑜𝑠(𝑛𝜋𝑡)(𝑠𝑖𝑛(𝑛𝜋𝑥) )∞

𝑛=1  

 

Notation of PDE: 

Note that 
𝜕2𝑢

𝜕𝑥2
≠ 𝑢′′ for 

𝜕𝑢

𝜕𝑥
≠ 𝑢′ for PDE as it has more than 1 possibility. For example, 𝑢′ can be 

𝜕𝑢

𝜕𝑥
 or 

𝜕𝑢

𝜕𝑡
 while 𝑢′′ can be 

𝜕2𝑢

𝜕𝑥2
 ,
𝜕2𝑢

𝜕𝑥𝜕𝑡
 , 𝑜𝑟

𝜕2𝑢

𝜕𝑡2
. 

Thus, instead of writing 𝑢′ or 𝑢′′ for PDE, there is another alternative.  

 

(i) Derivative and second derivative of 𝑢(𝑥, 𝑡) with respect to 𝑡 

𝑢𝑡 =
𝜕

𝜕𝑡
{𝑢(𝑥, 𝑡)}  ,  𝑢𝑡𝑡 =

𝜕2

𝜕𝑡2
{𝑢(𝑥, 𝑡)} 

(ii) Derivative and second derivative of 𝑢(𝑥, 𝑡) with respect to 𝑥 

𝑢𝑥 =
𝜕

𝜕𝑥
{𝑢(𝑥, 𝑡)}  ,  𝑢𝑥𝑥 =

𝜕2

𝜕𝑥2
{𝑢(𝑥, 𝑡)} 

(iii) Derivative of 𝑢(𝑥, 𝑡) with respect to 𝑡 and 𝑥 

𝑢𝑡𝑥 𝑜𝑟 𝑢𝑥𝑡 =
𝜕2

𝜕𝑥𝜕𝑡
{𝑢(𝑥, 𝑡)}  

Thus, we can rewrite and simplify the previous PDE using this notation: 

𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑡 + 𝐶𝑢𝑡𝑡 + 𝐷𝑢𝑥 + 𝐸𝑢𝑡 + 𝐹𝑢 = 0   , where 𝐴 − 𝐹 are constants. 



12.2 CATEGORIES OF 2N D ORDER LINEAR HOMOGENEOUS PDE 

Based on the 𝐵2 − 4𝐴𝐶, the PDE can be categorized into 3 types: 

Category Example Application 

Elliptic PDE 
 

𝐵2 − 4𝐴𝐶 < 0 

Laplace equation 
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 0       𝑢(𝑥, 𝑦) =? 

 
Characteristic:  
Steady state/ Time invariant 

To find the stable temperature distribution of 
a heated/cooled 2D plate 

 
 
 
 
 

 

Parabolic PDE 
 

𝐵2 − 4𝐴𝐶 = 0 

Heat conduction equation / Heat 
equation 
 

3
𝜕2𝑢

𝜕𝑥2
=
𝜕𝑢

𝜕𝑡
             𝑢(𝑥, 𝑡) =? 

 
Characteristic:  
Time variant, non-oscillating 

To find the temperature of a heated/cooled 1D 
rod that changes over time without oscillation 

 
Hyperbolic PDE 

 

𝐵2 − 4𝐴𝐶 > 0 

Wave equation 
𝜕2𝑢

𝜕𝑥2
=
𝜕2𝑢

𝜕𝑡2
               𝑢(𝑥, 𝑡) =? 

 
Characteristic:  
Time variant, oscillating 

To find the vibration of a string that changes 
over time with oscillation 

 

Note: 
𝜕

𝜕𝑡
= Time variant (change with time) or transient behavior 

Time invariant means that the physical quantity will not change with time or steady state behavior 

 

Description Elliptic PDE Equation Strategy to solve 

One-dimensional Laplace 

equation 

𝜕2𝑢

𝜕𝑥2
= 0  

𝑢(𝑥) =?   

Integration, Solve PDE like ODE, 

Reduction of Order (Out of the 

scope – Appendix 12 for extra 

info) 

Two-dimensional Laplace 

equation 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 0  

𝑢(𝑥, 𝑦) =?   

Separation of variables method  

(Focus) 

Three-dimensional Laplace 

equation 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
= 0  

𝑢(𝑥, 𝑦, 𝑧) =?   

Separation of variables method 

can be applied to 3D cases, 

however these 2 cases (Out of 

the scope) 

 

 



Description Parabolic PDE Equation Strategy to Solve 

One-dimensional heat 

equation 

1

𝑐2
𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑥2
  

𝑢(𝑥, 𝑡) =?   

Separation of variables method  

(Focus) 

Two-dimensional heat 

equation 

1

𝑐2
𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
  

𝑢(𝑥, 𝑦, 𝑡) =?   

Separation of variables method 

can be applied to 2D and 3D  

cases, however these 2 cases 

(out of the scope) 
Three-dimensional heat 

equation 

1

𝑐2
𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
  

𝑢(𝑥, 𝑦, 𝑧, 𝑡) =? 

 

Description Hyperbolic PDE Equation Strategy to solve 

One-dimensional wave 

equation 

1

𝑐2
𝜕2𝑢

𝜕𝑡2
=
𝜕2𝑢

𝜕𝑥2
  

𝑢(𝑥, 𝑡) =?   

Separation of variables method  

(Focus) 

Two-dimensional wave 

equation 

1

𝑐2
𝜕2𝑢

𝜕𝑡2
=
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
  

𝑢(𝑥, 𝑦, 𝑡) =?   

Separation of variables method 

can be applied to 2D and 3D  

cases, however these 2 cases 

(out of the scope) 
Three-dimensional wave 

equation 

1

𝑐2
𝜕2𝑢

𝜕𝑡2
=
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
  

𝑢(𝑥, 𝑦, 𝑧, 𝑡) =? 

 

Note that solving non-homogeneous PDE problem is out of scope in this study.  

For example: The non-zero RHS function, 𝑓(𝑥, 𝑦)𝑜𝑟𝑓(𝑥, 𝑡) ≠ 0 

Description Non-Homogeneous Elliptic PDE Equation 

Two-dimensional Poisson equation with heat 

source/sink 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 𝑓(𝑥, 𝑦)  

 

Description Non-Homogeneous Parabolic PDE Equation 

One-dimensional heat equation with heating 

element  

𝜕𝑢

𝜕𝑡
− 𝑐2

𝜕2𝑢

𝜕𝑥2
= 𝑓(𝑥, 𝑡)  

 

Description Non-Homogeneous Hyperbolic PDE Equation 

One-dimensional wave equation with forcing 

function 

𝜕2𝑢

𝜕𝑡2
− 𝑐2

𝜕2𝑢

𝜕𝑥2
= 𝑓(𝑥, 𝑡)  



12.3 SEPARATION OF VARIABLE METHOD 

For the 2nd order linear homogeneous PDE problem with constant coefficients: 

𝐴
𝜕2𝑢

𝜕𝑥2
+ 𝐵

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2𝑢

𝜕𝑦2
+ 𝐷

𝜕𝑢

𝜕𝑥
+ 𝐸

𝜕𝑢

𝜕𝑦
+ 𝐹𝑢 = 0 

We assume that our solution to be: 

𝑢(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦)⏟      
𝑐𝑎𝑛 𝑏𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 𝑖𝑛𝑡𝑜 𝑥 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦

 

Differentiate it,  

𝜕𝑢

𝜕𝑥
=
𝜕𝑋(𝑥)

𝜕𝑥
𝑌(𝑦) = 𝑋′𝑌        ; 

𝜕𝑢

𝜕𝑦
= 𝑋(𝑥)

𝜕𝑌(𝑦)

𝜕𝑦
= 𝑋𝑌′ 

𝜕2𝑢

𝜕𝑥2
=
𝜕2𝑋(𝑥)

𝜕𝑥2
𝑌(𝑦) = 𝑋′′𝑌    ; 

𝜕2𝑢

𝜕𝑦2
= 𝑋(𝑥)

𝜕2𝑌(𝑦)

𝜕𝑦2
= 𝑋𝑌′′ ; 

𝜕2𝑢

𝜕𝑥𝜕𝑦
=
𝜕𝑋(𝑥)

𝜕𝑥

𝜕𝑌(𝑦)

𝜕𝑦
= 𝑋′𝑌′ 

 

𝐴𝑋′′𝑌 + 𝐵𝑋′𝑌′ + 𝐶𝑋𝑌′′ + 𝐷𝑋′𝑌 + 𝐸𝑋𝑌′ + 𝐹𝑋𝑌 = 0 

𝑌(𝐴𝑋′′ + 𝐷𝑋′ + 𝐹𝑋) + 𝑌′(𝐵𝑋′ + 𝐸𝑋) + 𝑌′′(𝐶𝑋) = 0  

 

If the PDE can be simplified to 𝐶 = 0 ; 𝐵&𝐸 = 0; or 𝐴, 𝐷&𝐹 = 0. The problem can be simplified to 

a separable differential equation. For example, 

 If 𝐶 = 0     >>            𝑌(𝐴𝑋′′ + 𝐷𝑋′ + 𝐹𝑋) + 𝑌′(𝐵𝑋′ + 𝐸𝑋) = 0  

Rearrange the equation, we get the separation of variable result: 

𝑌′

𝑌
=
−(𝐴𝑋′′+𝐷𝑋′+𝐹𝑋)

(𝐵𝑋′+𝐸𝑋)
= −λ 

By assuming it is equal to a separation constant  of −λ, we success to convert it into 2 ODE equations. 

ODE #1: 
𝑌′

𝑌
= −λ ODE #2: 

−(𝐴𝑋′′+𝐷𝑋′+𝐹𝑋)

(𝐵𝑋′+𝐸𝑋)
= −λ 

𝑌′ + λ𝑌 = 0 (𝐴𝑋′′ + 𝐷𝑋′ + 𝐹𝑋) = (λ𝐵𝑋′ + λ𝐸𝑋) 
(𝐴)𝑋′′ + (𝐷 − λ𝐵)𝑋′ + (𝐹 − λ𝐸)𝑋 = 0 

 

Hint: Based on experience, separation constant of −λ  can solve the problem easier. In fact, let 

separation constant  of λ can also solve the problem with same answer but longer procedure.  

The separation constant, λ may be (i) zero, (ii) negative or (iii) positive. We can get three PDE solutions 

from these 3 cases. 

Case #1 (λ=0) Case #2 (λ= − 𝛼2), 𝛼 > 0 Case #3 (λ= + 𝛼2), 𝛼 > 0 

𝑌′ = 0 
𝑌1(𝑦) =? 

𝑌′ − 𝛼2𝑌 = 0 
𝑌2(𝑦) =? 

 

𝑌′ + 𝛼2𝑌 = 0 
𝑌3(𝑦) =? 

𝐴𝑋′′ + 𝐷𝑋′ + 𝐹𝑋
= 0 

𝑋1(𝑥) =? 
 

𝐴𝑋′′ + (𝐷 + 𝛼2𝐵)𝑋′ + (𝐹 + 𝛼2𝐸)𝑋
= 0 

𝑋2(𝑥) =? 
 

𝐴𝑋′′ + (𝐷 − 𝛼2𝐵)𝑋′ + (𝐹 − 𝛼2𝐸)𝑋
= 0 

𝑋3(𝑥) =? 
 

𝑢1 = 𝑋1(𝑥)𝑌1(𝑦) 
 

𝑢2 = 𝑋2(𝑥)𝑌2(𝑦) 
 

𝑢3 = 𝑋3(𝑥)𝑌3(𝑦) 
 

Total PDE solution can be obtained by superposition principle: 
𝑢(𝑥, 𝑦) = 𝑐1𝑢1 + 𝑐2𝑢2 + 𝑐3𝑢3 



Recall for the 2nd order linear homogeneous ODE: 

𝑎𝑋′′ + 𝑏𝑋′ + 𝑐𝑋 = 0 

Assume solution, 𝑋 = 𝑒𝑟𝑥 , Let 𝑟 =root 

Characteristic equation: 𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0 

Root of the characteristic equation, 𝑟 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
      (Note: you get 2 roots for 2nd order ODE) 

For 2nd 
order 
ODE 

If 𝑟1 ≠ 𝑟2 for case of distinct roots or 
complex conjugate roots 
𝑋1 = 𝑒

𝑟1𝑥  ; 𝑋2 = 𝑒
𝑟2𝑥 

where 𝑋1&𝑋2 are linearly independent 

Total solution can be obtained by 
superposition principle without 
treatment: 

𝑋𝑡𝑜𝑡𝑎𝑙 = 𝑐1𝑒
𝑟1𝑥 + 𝑐2𝑒

𝑟2𝑥 
 

f 𝑟1 = 𝑟2 for case of repeated roots 
𝑋1 = 𝑒

𝑟1𝑥  ; 𝑋2 = 𝑒
𝑟2𝑥 = 𝑒𝑟1𝑥  

where 𝑋1&𝑋2 are linearly dependent 
 
Treatment must be done by multiplying 
with the independent variable 
𝑋1 = 𝑒

𝑟1𝑥  ; 𝑋2,𝑡𝑟𝑒𝑎𝑡 = 𝑥𝑒
𝑟2𝑥 = 𝑥𝑒𝑟1𝑥 

where 𝑋1&𝑋2,𝑡𝑟𝑒𝑎𝑡  are linearly 
independent 

Total solution can be obtained by 
superposition principle with treatment: 

𝑋𝑡𝑜𝑡𝑎𝑙 = 𝑐1𝑒
𝑟1𝑥 + 𝑐2𝑥𝑒

𝑟2𝑥 

 

Note that the same method can be used to solve 1st order linear homogeneous ODE: 

𝑏𝑋′ + 𝑐𝑋 = 0 

Assume solution, 𝑋 = 𝑒𝑟𝑥 , Let 𝑟 =root 

Characteristic equation: 𝑏𝑟 + 𝑐 = 0 

Root of the characteristic equation, 𝑟 =
−𝑐

𝑏
     (Note: you get 1 root for 1st order ODE) 

For 1st 
order 
ODE 

𝑋1 = 𝑒
𝑟1𝑥   

 

Total solution can be obtained by 
superposition principle: 

𝑋𝑡𝑜𝑡𝑎𝑙 = 𝑐1𝑒
𝑟1𝑥 

 

 

 

 

 

 

 

 

 

 



Example: Solve the general solution of PDE below by using the separation of variable method 

𝜕2𝑢

𝜕𝑥2
= 4

𝜕𝑢

𝜕𝑦
  

• Step 1: Using separation of variable method: Let 𝑢(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦)  

𝑋′′𝑌 = 4𝑋𝑌′ 

• Step 2:  Obtain 2 ODE equations 

𝑋′′

4𝑋
=
𝑌′

𝑌
= −λ 

(𝐻𝑖𝑛𝑡: Calculation is easier with the coefficient = 1 for the numerator components) 

𝑌′ + λ𝑌 = 0   --- (ODE #1) 

𝑋′′ + 4λ𝑋 = 0 --- (ODE #2) 

• Step 3:  3 cases of λ 

3.1 Case #1 (λ=0) 

𝑌′ = 0 𝑋′′ = 0 
Let 𝑟 =root  
Characteristic equation: 𝑟 = 0 
∴ 𝑌(𝑦) = 𝑐1𝑒

𝑟𝑦 = 𝑐1 
 

Let 𝑟 =root  
Characteristic equation: 𝑟2 = 0,  
Repeated root case, 𝑟1 = 𝑟2 = 0 
∴ 𝑋(𝑥) = 𝑐2𝑒

𝑟1𝑥 + 𝑐3 𝑥⏟
𝑡𝑟𝑒𝑎𝑚𝑒𝑛𝑡

𝑒𝑟2𝑥 

𝑋(𝑥) = 𝑐2 + 𝑐3𝑥 
 

PDE solution in Case 1: 
∴ 𝑢1 = 𝑋1(𝑥)𝑌1(𝑦) = (𝑐2 + 𝑐3𝑥)(𝑐1) = 𝐴1𝑥 + 𝐵1 where 𝐴1, 𝐵1 =constant 
 

 

3.2 Case #2 (λ=− 𝛼2), 𝛼 > 0 

𝑌′ − 𝛼2𝑌 = 0 𝑋′′ − 4𝛼2𝑋 = 0 
Let 𝑟 =root  
Characteristic equation:  𝑟 − α2 = 0  
                                                          𝑟 = α2 

∴ 𝑌(𝑦) = 𝑐4𝑒
α2𝑦  

 

Let 𝑟 =root  

Characteristic equation:    𝑟2 − 4α2 = 0  

𝑟 = ±√4α2 
Distinct root case: 𝑟1 = +2α, 𝑟2 = −2α 

∴ 𝑋(𝑥) = 𝑐5𝑒
2α𝑥 + 𝑐6𝑒

−2α𝑥 
 

PDE solution in Case 2: 

∴ 𝑢2 = 𝑋2(𝑥)𝑌2(𝑦) = (𝑐5𝑒
2α𝑥 + 𝑐6𝑒

−2α𝑥)(𝑐4𝑒
α2𝑦) 

𝑢2 = 𝑒
𝛼2𝑦 (𝐴2𝑒

2𝛼𝑥 + 𝐵2𝑒
−2𝛼𝑥) where 𝐴2, 𝐵2 =constant 

 

 

 

 

 



3.3 Case #3 (λ=+ 𝛼2), 𝛼 > 0 

𝑌′ + 𝛼2𝑌 = 0 𝑋′′ + 4𝛼2𝑋 = 0 
Let 𝑟 =root  
Characteristic equation:  𝑟 + 𝛼2 = 0  
                                                         𝑟 = −𝛼2 

∴ 𝑌(𝑦) = 𝑐7𝑒
−𝛼2𝑦  

 

Let 𝑟 =root  

Characteristic equation:    𝑟2 + 4α2 = 0  

𝑟 = ±√−4α2 
Complex conjugate root case: 

𝑟1 = +2α𝑖, 𝑟2 = −2α𝑖 

∴ 𝑋(𝑥) = 𝑐8𝑒
2𝛼𝑥𝑖 + 𝑐9𝑒

−2𝛼𝑥𝑖 
 

PDE solution in Case #3: 

∴ 𝑢3 = 𝑋3(𝑥)𝑌3(𝑦) = (𝑐8𝑒
2𝛼𝑥𝑖 + 𝑐9𝑒

−2𝛼𝑥𝑖)(𝑐7𝑒
−𝛼2𝑦 ) 

𝑢3 = 𝑒
−𝛼2𝑦 (𝐴3𝑒

2𝛼𝑥𝑖 + 𝐵3𝑒
−2𝛼𝑥𝑖) where 𝐴3, 𝐵3 =constant 

 

 

• Step 4:  Using superposition principle to find the general PDE solution 

𝑢(𝑥, 𝑦) = 𝐴1𝑥 + 𝐵1⏟      
𝐶𝑎𝑠𝑒1𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

+ 𝑒𝛼
2𝑦 (𝐴2𝑒

2𝛼𝑥 + 𝐵2𝑒
−2𝛼𝑥)⏟                

𝐶𝑎𝑠𝑒2𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

+ 𝑒−𝛼
2𝑦 (𝐴3𝑒

2𝛼𝑥𝑖 + 𝐵3𝑒
−2𝛼𝑥𝑖)⏟                  

𝐶𝑎𝑠𝑒3𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 

12.4 EXPRESSION OF PDE SOLUTION IN TERMS OF COS/SINE OR COSH/SINH 

Previously in ODE chapter, we have learned that the exponential of complex conjugate roots can be 

expressed in terms of 𝑐𝑜𝑠 and 𝑠𝑖𝑛 via Euler formula. 

(A3𝑒
2α𝑥𝑖 + B3𝑒

−2α𝑥𝑖) = (𝐶3𝑐𝑜𝑠(2𝛼𝑥) + 𝐷3𝑠𝑖𝑛(2𝛼𝑥)) 

Similarly, exponential of distinct real roots can be expressed in terms of 𝑐𝑜𝑠ℎ  and 𝑠𝑖𝑛ℎ via Euler 

formula. These two expressions are useful to find the particular solution for the PDE later.  

(𝐴2𝑒
2𝛼𝑥 + 𝐵2𝑒

−2𝛼𝑥) = (𝐶2𝑐𝑜𝑠ℎ(2𝛼𝑥) + 𝐷2𝑠𝑖𝑛ℎ(2𝛼𝑥)) 

Derivation by using Euler Formula is given below: 

A3𝑒
2α𝑥𝑖 + B3𝑒

−2α𝑥𝑖 A2𝑒
2α𝑥 + B2𝑒

−2α𝑥 

Since 𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃, we get 

∴ A3(𝑐𝑜𝑠(2α𝑥) + 𝑖𝑠𝑖𝑛(2α𝑥)) 

+B3(𝑐𝑜𝑠(−2α𝑥) + 𝑖𝑠𝑖𝑛(−2α𝑥)) 

 
Since 𝑐𝑜𝑠(−𝜃) = 𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛(−𝜃) = −𝑠𝑖𝑛𝜃 

∴ A3(𝑐𝑜𝑠(2α𝑥) + 𝑖𝑠𝑖𝑛(2α𝑥)) 

+B3(𝑐𝑜𝑠(2α𝑥) − 𝑖𝑠𝑖𝑛(2α𝑥)) 

 
Rearrange, 

∴ 𝑐𝑜𝑠(2α𝑥)(A3 + B3) 
+𝑠𝑖𝑛(2α𝑥)(𝑖A3 − 𝑖B3) 

 
∴ 𝐶3𝑐𝑜𝑠(2α𝑥) + 𝐷3𝑠𝑖𝑛(2α𝑥) 

 
where 𝐶3 = A3 + B3; D3 = 𝑖A3 − 𝑖B3 

Since 𝑒𝜃 = 𝑐𝑜𝑠ℎ𝜃 + 𝑠𝑖𝑛ℎ𝜃 , we get 

∴ A2(𝑐𝑜𝑠ℎ(2α𝑥) + 𝑠𝑖𝑛ℎ(2α𝑥)) 

+B2(𝑐𝑜𝑠ℎ(−2α𝑥) + 𝑠𝑖𝑛ℎ(−2α𝑥)) 

 
Since 𝑐𝑜𝑠 ℎ(−𝜃) = 𝑐𝑜𝑠ℎ𝜃, 𝑠𝑖𝑛ℎ(−𝜃) = −𝑠𝑖𝑛ℎ𝜃 

∴ A2(𝑐𝑜𝑠h(2α𝑥) + 𝑠𝑖𝑛h(2α𝑥)) 

+B2(𝑐𝑜𝑠h(2α𝑥) − 𝑠𝑖𝑛h(2α𝑥)) 

 
Rearrange, 

∴ 𝑐𝑜𝑠h(2α𝑥)(A2 + B2) 
+𝑠𝑖𝑛h(2α𝑥)(A2 − B2) 

 
∴ 𝐶2𝑐𝑜𝑠h(2α𝑥) + 𝐷2𝑠𝑖𝑛h(2α𝑥) 

 
where 𝐶2 = 𝐴2 +𝐵2; 𝐷2 = 𝐴2 − 𝐵2 

Thus, the previous PDE solution can be expressed in the cos/sine & cosh/sinh formats: 

𝑢(𝑥, 𝑦) = 𝐴1𝑥 + 𝐵1⏟      
𝐶𝑎𝑠𝑒1𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

+ 𝑒𝛼
2𝑦 (𝐶2𝑐𝑜𝑠ℎ(2𝛼𝑥) + 𝐷2𝑠𝑖𝑛ℎ(2𝛼𝑥))⏟                        

𝐶𝑎𝑠𝑒2𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

+ 𝑒−𝛼
2𝑦 (𝐶3𝑐𝑜𝑠(2𝛼𝑥) + 𝐷3𝑠𝑖𝑛(2𝛼𝑥))⏟                      

𝐶𝑎𝑠𝑒3𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 



Important Characteristics of Sine, Cosine, Hyperbolic Sine & Hyperbolic Cosine: 

Sine, 
𝑠𝑖𝑛(𝑥) 

Cosine, 
𝑐𝑜𝑠(𝑥) 

Hyperbolic Sine,  
𝑠𝑖𝑛ℎ(𝑥) 

Hyperbolic Cosine, 
𝑐𝑜𝑠ℎ(𝑥) 

 

 
 
  

  

sin(0)=0 cos(0)=1 sinh(0)=0 
 

cosh(0)=1 
 

Odd function 
sin(-x)= -sin(x) 

 

Even function 
cos(-x)=cos(x) 

 

Odd function 
sinh(-x)= -sinh(x) 

 

Even function 
cosh(-x)=cosh(x) 

 
𝑑

𝑑𝑥
𝑠𝑖𝑛(𝑥) = 𝑐𝑜𝑠(𝑥) 

 

𝑑

𝑑𝑥
𝑐𝑜𝑠(𝑥) = −𝑠𝑖𝑛(𝑥) 

 

𝑑

𝑑𝑥
𝑠𝑖𝑛ℎ(𝑥) = 𝑐𝑜𝑠ℎ(𝑥) 

𝑑

𝑑𝑥
𝑐𝑜𝑠ℎ(𝑥) = 𝑠𝑖𝑛ℎ(𝑥) 

𝑠𝑖𝑛(𝑛𝜋) = 0 
where 𝑛 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑐𝑜𝑠 ((2𝑛 − 1)

𝜋

2
) = 0 

where 𝑛 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

𝑠𝑖𝑛ℎ(0) = 0 only when 𝑥 = 0 
𝑠𝑖𝑛ℎ(𝑥) > 0 for 𝑥 > 0 

𝑐𝑜𝑠ℎ(𝑥) ≠ 0 for any 𝑥 
𝑐𝑜𝑠ℎ(𝑥) > 0 for any 𝑥 

 

12.5 INITIAL/ BOUNDARY CONDITION OF PDE PROBLEM 

Previously, we solve the following PDE:  
𝜕2𝑢

𝜕𝑥2
= 4

𝜕𝑢

𝜕𝑦
 and obtain the general solution with a lot of 

unknowns (𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝐴3, 𝐵3). By using initial or/and boundary conditions of the problem, we can 

continue to solve those unknowns and obtain the particular solution of the PDE. 

 

Thus, it is important to formulate the initial/ boundary condition from a given problem. The three 

conditions that are found to occur most regularly are  

 
  

Note: A boundary C is said to be closed if conditions are specified on the whole of it, or open if 

conditions are only specified on part of it. Naming of the type of conditions is out of scope, it is 

sufficient as long as student is able to formulate the equations for the initial/ boundary conditions. 

 

Example of formulating the initial/ boundary condition from Elliptic PDE, Parabolic PDE, and 

Hyperbolic PDE are given below: 

i. Elliptic PDE: Set up the boundary value problem for the steady-state temperature u(x, y) for a 

thin rectangular plate coincides with the region defined by 0 ≤ x ≤ 4, 0 ≤ y ≤ 2. The left end and 

the bottom of the plate are insulated. The top of the plate is held at temperature zero, and the 

right end of the plate is held at temperature f(y). The PDE that governs the problem is given:  
2D Laplace Equation 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 0.  

 



Solution:  Stable temperature distribution of 2D plate, 𝑢(𝑥, 𝑦)  

The corresponding region and boundary conditions in 

the (x,y) plane for a steady state heated rectangular 

plate. 

 

Dirchlet condition for the top and 
right end: 

𝑢(𝑥, 2) = 0 ,         0 < 𝑥 <4 

𝑢(4,  𝑦) = 𝑓(𝑦) ,   0 < 𝑦 < 2 

 
Neumann condition for the bottom 
and left end: 
𝜕𝑢(𝑥,0)

𝜕𝑦
=
𝜕𝑢

𝜕𝑦
|
𝑦=0

= 0 , 0 < 𝑥 <4 

𝜕𝑢(0,𝑦)

𝜕𝑥
=
𝜕𝑢

𝜕𝑥
|
𝑥=0

= 0,  0 < 𝑦 < 2 

Note: The heat flux can’t flow in the x-direction, 𝑞𝑥 = 0 if there is insulation on the left end. Since 

𝑞𝑥 = −𝑘
𝜕𝑢

𝜕𝑥⏟
𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

= 0, thus 
𝜕𝑢

𝜕𝑥
|
𝑥=0

= 0 indicates insulation on left end which blocks 

the heat flux to flow in the x-direction. 

 

ii. Parabolic PDE: A rod of length L coincides with the interval [0, L] on the x-axis. Set up the 

boundary value problem for the temperature u(x, t) when the left end is held at temperature zero, 

and the right end is insulated. The initial temperature is f(x) throughout. The PDE that governs 

the problem is given: 1D Heat Equation 
𝜕𝑢

𝜕𝑡
= 𝑐2

𝜕2𝑢

𝜕𝑥2
 where 𝑐 = constant. Formulate the initial/ 

boundary condition. 

Solution: Temperature of the 1D bar that changes over time, 𝑢(𝑥, 𝑡) 

The corresponding region and boundary 

conditions in the (x,t) plane for a 

heated/cooled bar 

 

 
Dirchlet condition for the left end: 

𝑢(0,  𝑡) = 0 , 𝑡 > 0 

 
Dirchlet condition for the initial temperature: 

𝑢(𝑥,  0) = 𝑓(𝑥)
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
=
𝜕𝑢

𝜕𝑥
|
𝑥
≠ 0 

⏟          
𝑏𝑎𝑟𝑖𝑠𝑛𝑜𝑡𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑒𝑑

}   0 < 𝑥 < 𝐿 

 
Neumann condition for the right end: 

𝑢𝑥(𝐿, 𝑡) =
𝜕𝑢(𝐿, 𝑡)

𝜕𝑥
=
𝜕𝑢

𝜕𝑥
|
𝑥=𝐿

= 0 , 𝑡 > 0 

 

f(y) 



iii. Hyperbolic PDE: A string of length L coincides with interval [0, L] on the x-axis. Set up the boundary 

value problem for the displacement u(x, t) when the ends are secured to the x-axis. The string is 

released from rest from the initial displacement x(L – x). The PDE that governs the problem is 

given: 1D Wave Equation  
𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝜕𝑥2
  where 𝑐  = constant. Formulate the initial/ boundary 

condition. 

Solution: Vibration of the 1D string over time, 𝑢(𝑥, 𝑡) 

The corresponding region and boundary 

conditions in the (x,t) plane for a 

vibrating string 

 

Dirchlet condition for the fixed end: 

𝑢(0,  𝑡) = 0 

𝑢(𝐿,  𝑡) = 0 
} 𝑡 > 0 

 
Cauchy condition for initial displacement/velocity: 

𝑢(𝑥,  0) = 𝑥(𝐿 − 𝑥)
𝜕𝑢(𝑥,0)

𝜕𝑡
=
𝜕𝑢

𝜕𝑡
|
𝑡=0

= 0
}   0 < 𝑥 < 𝐿 

 

 

 


