
SOLVING PARTICULAR SOLUTION OF 

HEAT EQUATION & WAVE EQUATION 
WEEK 14: SOLVING PARTICULAR SOLUTION OF HEAT EQUATION & WAVE EQUATION 

14.1 STRATEGY TO SOLVE HOMOGENEOUS PDE PROBLEM VIA SEPARABLE OF VARIABLE  

 

Previously we have learned how to apply separation of variable method to solve the Laplace equation, 

then we formed the boundary conditions of the problem and apply it together with the Fourier series 

expansion to obtain the particular PDE solution. Same  strategy is used to solve the heat equation and 

wave equation in this chapter, as summarized below:  

Let 𝑢 =dependent variable, 𝑥, 𝑡 =independent variables 

Step 1: 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡)  

Step 2:  Obtains 2 ODE equations using separation constant, −λ. Let the coefficient of numerator to 

be 1 for easier calculation. 

Step 3: Consider 3 cases: λ=0  ; λ=− α2 ; λ= α2, where  α > 0  

             Then, we can obtain all possible solutions, 𝑢1, 𝑢2, & 𝑢3 respectively for each case. 

Step 4.1: If initial/ boundary conditions can’t be formed/ obtained, 

              General PDE solution via superposition principle, 𝑢(𝑥, 𝑦) = 𝑐1𝑢1 + 𝑐2𝑢2 + 𝑐3𝑢3,  

where 𝑐1, 𝑐2, 𝑐3 are unknowns. 

Step 4.2: If initial/ boundary conditions can be formed/ obtained, 

              Then, we proceed to apply the homogeneous BC to solve the particular solution, 𝑢1, 𝑢2, & 𝑢3 

for each case. Then, eigenvalue and eigenfunction can be identified for case with solution and 

they can be combined to form the total solution. 

Step 5: Continue to apply the remaining initial/ boundary conditions & Fourier series expansion to 

solve the remaining unknown. 

              Particular PDE solution via superposition principle, 𝑢(𝑥, 𝑦) = 𝑢1 + 𝑢2 + 𝑢3,  

where 𝑐1, 𝑐2, 𝑐3 are found. 

 

  

 

 

 

 



14.2 SOLVING PARTICULAR SOLUTION OF PARABOLIC PDE (HEAT EQUATION) 

Consider a thin rod of length L with an initial temperature f(x) throughout and whose ends are held at 

temperature zero for all time t > 0. Given these initial/boundary conditions, find the change of the 

temperature over the time and x location, i.e. 𝑢(𝑥, 𝑡). 

 
1D rod with boundary conditions on both ends and initial temperature of the bar. 

 

 Governing equation for the 1D heat equation 

𝑘
𝜕2𝑢

𝜕𝑥2
=
𝜕𝑢

𝜕𝑡
 

 Boundary condition 1 & 2:  𝑢(0,  𝑡) = 0 , 𝑢(𝐿,  𝑡) = 0               for 𝑡 > 0 

 

 Initial condition                  : 𝑢(𝑥,  0) = 𝑓(𝑥)        for 0 < 𝑥 < 𝐿 

 

Solution:  

Step 1: Using separation of variable method: Let 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡)  

𝑘𝑋′′𝑇 = 𝑋𝑇′ 

 

Step 2:  Obtain 2 ODE equations 

𝑇′

𝑘𝑇
=
𝑋′′

𝑋
= −λ 

𝑇′ + kλ𝑇 = 0 --- (ODE #1) 

𝑋′′ + λ𝑋 = 0 --- (ODE #2) 

 

Case ODE #1 ODE #2 𝑢(𝑥, 𝑦) = 𝑋(𝑥)𝑇(𝑡) 

Case #1: 
(λ=0) 

𝑇′ = 0     
Let 𝑟 =root  
Characteristic equation: 
𝑟 = 0 
 

𝑇(𝑡) = 𝑐1𝑒
0𝑡 

∴ 𝑇(𝑡) = 𝑐1 
 

𝑋′′ = 0     
Let 𝑟 =root  
Characteristic equation: 

𝑟2 = 0 
Repeated root: 𝑟1 = 0, 𝑟2 =
0 
 
𝑋(𝑥) = 𝑐2𝑒

0𝑥 + 𝑐3𝑥𝑒
0𝑥 

∴ 𝑋(𝑥) = 𝑐2 + 𝑐3𝑥  
 
 

∴ 𝑢1 = 𝑋1(𝑥)𝑇1(𝑡) 

= (𝑐1 )(𝑐2 + 𝑐3𝑥 ) 

= 𝐴1𝑥 + 𝐵1 
 



Case #2: 
(λ=− α2) 
α > 0 

 

𝑇′ − (𝛼2k)𝑇 = 0 
Let 𝑟 =root  
Characteristic equation: 

𝑟 − 𝛼2𝑘 = 0 
𝑟 = 𝛼2𝑘 

 

∴ 𝑇(𝑡) = 𝑐4𝑒
𝛼2𝑘𝑡 

 

𝑋′′ − α2𝑋 = 0 
Let 𝑟 =root  
Characteristic equation: 

𝑟2 − 𝛼2 = 0 

𝑟 = ±√α2 = ±α 
 
Distinct roots:  

𝑟1 = α, 𝑟2 = −α 
 
∴ 𝑋(𝑥) = 𝑐5𝑐𝑜𝑠ℎ(𝛼𝑥) +
𝑐6𝑠𝑖𝑛ℎ(𝛼𝑥)   
 

∴ 𝑢2 = 𝑋2(𝑥)𝑇2(𝑡) 

= 𝑐4𝑒
𝛼2𝑘𝑡 (𝑐5𝑐𝑜𝑠ℎ(𝛼𝑥)

+ 𝑐6𝑠𝑖𝑛ℎ(𝛼𝑥)) 

= 𝑒𝛼
2𝑘𝑡 (𝐴2𝑐𝑜𝑠ℎ(𝛼𝑥)

+ 𝐵2𝑠𝑖𝑛ℎ(𝛼𝑥)) 

Case #3: 
(λ=+ α2) 
α > 0 

 

𝑇′ + 𝛼2𝑘𝑇 = 0 
Let 𝑟 =root  
Characteristic equation: 

𝑟2 + 𝛼2𝑘 = 0 
𝑟 = −𝛼2𝑘 

 

∴ 𝑇(𝑡) = 𝑐7𝑒
−𝛼2𝑘𝑡 

 

𝑋′′ + (α2)𝑋 = 0 
Let 𝑟 =root  
Characteristic equation: 

𝑟2 + α2 = 0 

𝑟 = ±√−α2 = ±𝛼𝑖 
 
Complex conjugate roots: 
𝑟1 = α𝑖, 𝑟2 = −α𝑖 
 

∴ 𝑋(𝑥) = 𝑐8𝑐𝑜𝑠(𝛼𝑥) +
𝑐9𝑠𝑖𝑛(𝛼𝑥)   
 

∴ 𝑢3 = 𝑋3(𝑥)𝑇3(𝑡) 
 

= (𝑐7𝑒
−𝛼2𝑘𝑡) (𝑐8𝑐𝑜𝑠(𝛼𝑥)

+ 𝑐9𝑠𝑖𝑛(𝛼𝑥) ) 

= 𝑒−𝛼
2𝑘𝑡 (𝐴3𝑐𝑜𝑠(𝛼𝑥)

+ 𝐵3𝑠𝑖𝑛(𝛼𝑥) ) 

 

In fact, we can find the general PDE solution to the problem by using superposition principle: 

𝑢(𝑥, 𝑡) = 𝐴1𝑥 + 𝐵1⏟      
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑜𝑓𝐶𝑎𝑠𝑒1

+ 𝑒𝛼
2𝑘𝑡 (𝐴2𝑐𝑜𝑠ℎ(𝛼𝑥) + 𝐵2𝑠𝑖𝑛ℎ(𝛼𝑥))⏟                      

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑜𝑓𝐶𝑎𝑠𝑒2

 

                    +𝑒−𝛼
2𝑘𝑡 (𝐴3𝑐𝑜𝑠(𝛼𝑥) + 𝐵3𝑠𝑖𝑛(𝛼𝑥) )⏟                      

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑜𝑓𝐶𝑎𝑠𝑒3

 

where there are 6 unknown coefficients (𝐴1 − 𝐵3).Next, we will continue to solve those unknowns 

by applying the initial/ boundary conditions.  

 

To apply the following boundary conditions.  

Boundary condition (BC) #1: 𝑢(0,  𝑡) = 0 ,   BC #2: 𝑢(𝐿,  𝑡) = 0 

Case Applying BC #1 & BC #2 

Case #1: 
(λ=0) 

 𝑢1 = 𝑋1(𝑥)𝑇1(𝑡) 
= 𝐴1𝑥 + 𝐵1 

Applying BC #1: 𝑢1(0, 𝑡) = A1(0) + B1 = 0        
Thus, B1 = 0 
→ 𝑢1 = 𝐴1𝑥 

 
 Applying BC #2, we get 𝑢1(𝐿, 𝑡) = 𝐴1𝐿 = 0                     

Since 𝐿 ≠ 0, 𝐴1 = 0 
 

∴ 𝑢1(𝑥, 𝑡) = 0 (No solution) 



 

Case #2: 
(λ=− α2) 
α > 0 

 

𝑢2 = 𝑋2(𝑥)𝑇2(𝑡) 

= 𝑒𝛼
2𝑘𝑡 (𝐴2𝑐𝑜𝑠ℎ(𝛼𝑥) + 𝐵2𝑠𝑖𝑛ℎ(𝛼𝑥)) 

 

Applying BC #1: 𝑢2(0, 𝑡) = 𝑒
−𝛼2𝑘𝑡 (𝐴2 ) = 0 

Comparing coefficient 𝑒−α
2𝑘𝑡:   thus 𝐴2 = 0 

(Note: 𝑒−α
2𝑘𝑡 ≠ 0 as the temperature changes over time, else no solution) 

→ 𝑢2(𝑥, 𝑡) = 𝐵2𝑠𝑖𝑛ℎ(𝛼𝑥) 
 

Applying BC #2: 𝑢2(𝐿, 𝑡) = 𝑒
−𝛼2𝑘𝑡 (𝐵2𝑠𝑖𝑛ℎ(𝛼𝐿) ) = 0 

Comparing coefficient 𝑒−α
2𝑘𝑡:  (𝐵2𝑠𝑖𝑛ℎ(𝛼𝐿) ) = 0 

Since 𝑠𝑖𝑛ℎ(𝛼𝐿) will not be zero for α > 0, thus 𝐵2 = 0 
Hint: 𝛼𝐿 > 0 
 

∴ 𝑢2(𝑥, 𝑡) = 0 (No solution) 
 

Case #3: 
(λ=+ α2) 
α > 0 

 

∴ 𝑢3 = 𝑋3(𝑥)𝑇3(𝑡) 

= 𝑒−𝛼
2𝑘𝑡 (𝐴3𝑐𝑜𝑠(𝛼𝑥) + 𝐵3𝑠𝑖𝑛(𝛼𝑥) ) 

 
 

Applying BC #1:  𝑢3(0, 𝑡) = 𝑒
−𝛼2𝑘𝑡 (𝐴3 ) = 0 

Comparing coefficient 𝑒−α
2𝑘𝑡:  𝐴3 = 0 

→ 𝑢3 = 𝑒
−𝛼2𝑘𝑡 (𝐵3𝑠𝑖𝑛(𝛼𝑥) ) 

 

Applying BC #2: 𝑢3(𝐿, 𝑡) = 𝑒
−𝛼2𝑘𝑡 (𝐵3𝑠𝑖𝑛(𝛼𝐿) ) = 0 

Comparing coefficient 𝑒−𝛼
2𝑘𝑡:  (𝐵3𝑠𝑖𝑛(𝛼𝐿) ) = 0 

 

Since 𝐵3 ≠ 0 𝑤ℎ𝑒𝑛 𝑠𝑖𝑛(𝛼𝐿)=0  for α𝐿 = 𝑛𝜋, where α =
𝑛𝜋

𝐿
 , 𝑛 = 1,2,3… 

 
There are infinite solutions in Case #3: 

𝑢3,𝑛 = 𝑒
−(

𝑛𝜋

𝐿
)
2
𝑘𝑡

 (𝐵3,𝑛𝑠𝑖𝑛(
𝑛𝜋

𝐿
𝑥) ) where 𝑛 =1,2,3,… 

 

In summary, the eigenvalue and eigenfunction of the PDE for each case are listed below: 

Case PDE solution Eigenvalue and eigenfunction of PDE 

Case #1: 
(λ=0) 

𝑢1(𝑥, 𝑡) = 0 

No solution  
hence no eigenvalue and no 

eigenfunction 
 

Case #2: 
(λ=− α2) 
α > 0 

 

𝑢2(𝑥, 𝑡) = 0 

No solution  
hence no eigenvalue and no 

eigenfunction 
 

Case #3: 
(λ=+ α2) 
α > 0 

 

𝑢3,𝑛 = 𝑒
−(
𝑛𝜋
𝐿
)
2
𝑘𝑡

 (𝐵3,𝑛𝑠𝑖𝑛(
𝑛𝜋

𝐿
𝑥) ) 

Eigenvalue, λ𝑛=+ 𝛼𝑛
2 = (

𝑛𝜋

𝐿
)
2

 

Eigenfunction 𝑢3,𝑛 

= 𝑒
−(
𝑛𝜋
𝐿
)
2
𝑘𝑡

 (𝐵3,𝑛𝑠𝑖𝑛(
𝑛𝜋

𝐿
𝑥) ) 



 

Step 4:   Superposition Principle to find 𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) = 𝑋1𝑇1 + 𝑋2𝑇2 + 𝑋3𝑇3 

𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) = ∑ 𝑒
−(
𝑛𝜋
𝐿
)
2
𝑘𝑡

 (𝐵3,𝑛𝑠𝑖𝑛(
𝑛𝜋

𝐿
𝑥) )

∞

𝑛=1⏟                    
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑓𝑟𝑜𝑚𝐶𝑎𝑠𝑒3

 

where there are 1 unknown remaining (i.e. 𝐵3,𝑛).  

 

Step 5:  Continue to apply the remaining BC & Fourier series expansion. 

BC #3: 𝑢(𝑥,  0) = 𝑓(𝑥) for 0 < 𝑥 < 𝐿 

𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 0) = ∑  (𝐵3,𝑛𝑠𝑖𝑛(
𝑛𝜋

𝐿
𝑥) )∞

𝑛=1 = 𝑓(𝑥)  

 

Recall Half-range Fourier Sine Series Expansion: 

𝑓(𝑥) = ∑ (𝑏𝑛 𝑠𝑖𝑛 𝑛𝜔𝑥)
∞
𝑛=1   

where 𝑏𝑛 =
2

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝜔𝑥 𝑑𝑥

τ

0
  

 

Precaution: 𝐿 in the formula indicates the half period, i.e. 𝐿 =
𝑝

2
=

𝜋

𝜔
. Do not mix it with the length 

of the 1D bar, which is using the same symbol, 𝐿 as well.  
 
Note that for (i) Half-range expansion: Finite interval, τ = ℎ𝑎𝑙𝑓𝑝𝑒𝑟𝑖𝑜𝑑, 𝐿  

(ii) Full-range expansion:  Finite interval, τ = 𝑓𝑢𝑙𝑙𝑝𝑒𝑟𝑖𝑜𝑑, 2𝐿  

 

We notice 𝐵3,𝑛 = 𝑏𝑛 =
2

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝜔𝑥 𝑑𝑥

τ

0
 ,  

where 𝜔 =
𝜋

𝐿
  & 

From 0 < 𝑥 < 𝐿, τ = 𝑙𝑒𝑛𝑔𝑡ℎ,L. For half-range expansion, τ = ℎ𝑎𝑙𝑓𝑝𝑒𝑟𝑖𝑜𝑑,L. Thus, in this 

case it happens to have τ = ℎ𝑎𝑙𝑓𝑝𝑒𝑟𝑖𝑜𝑑,L = 𝑙𝑒𝑛𝑔𝑡ℎ,L in this special case.  

Precaution: Note that it would be different for full-range expansion case.  

 

→ 𝐵3,𝑛 =
2

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛

𝜋

𝐿
𝑥 𝑑𝑥

L

0
  

 

Thus, we have solved all the unknowns and obtain the particular PDE solution: 

∴ 𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) = ∑ 𝑒
−(
𝑛𝜋
𝐿
)
2
𝑘𝑡

 (𝐵3,𝑛𝑠𝑖𝑛(
𝑛𝜋

𝐿
𝑥) )

∞

𝑛=1

 



𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) = ∑ 𝑒
−(
𝑛𝜋
𝐿
)
2
𝑘𝑡

 (
2

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛

𝜋

𝐿
𝑥 𝑑𝑥

L

0

𝑠𝑖𝑛(
𝑛𝜋

𝐿
𝑥) )

∞

𝑛=1

 

 

Example: Let the 𝑓(𝑥) = 100 , dimension, 𝑙𝑒𝑛𝑔𝑡ℎ, 𝐿 = 𝜋, PDE coefficient, 𝑘 = 1  for the previous 

problem. 

𝐵3,𝑛 =
2

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛

𝜋

𝐿
𝑥 𝑑𝑥

L

0

 

=
2

𝜋
∫ 100𝑠𝑖𝑛 𝑛𝑥 𝑑𝑥
𝜋

0

 

=
200

𝜋
[
−𝑐𝑜𝑠𝑛𝑥

𝑛
]
0

𝜋

 

=
200

𝜋
(
−𝑐𝑜𝑠𝑛𝜋

𝑛
−
−1

𝑛
) 

=
200

𝜋
(
1 − (−1)𝑛

𝑛
) 

 

∴ 𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) = ∑ 𝑒
−(

𝑛𝜋

𝜋
)
2
(1)𝑡

 (
200

𝜋
(
1−(−1)𝑛

𝑛
) 𝑠𝑖𝑛(

𝑛𝜋

𝜋
𝑥) )∞

𝑛=1   

= ∑ 𝑒−𝑛
2𝑡 (

200

𝜋
(
1−(−1)𝑛

𝑛
) 𝑠𝑖𝑛(𝑛𝑥) )∞

𝑛=1   

 

We can use the PDE solution to estimate the temperature distribution at any point on the cooled rod. 

Example: The temperature results at 50 × 500 points of the (𝑥, 𝑡) locations for a duration of 10s have 

been plotted below: 

 

3D plot of 𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) wrt 𝑥- & 𝑡- axes 2D contour plot 



 
-Due to boundary conditions on both sides of the 1D 
rods  and the initial temperature of the rod, the 
temperature of the rod changes over time, and it is 
converging to the BC temperature, i.e. 0𝑜𝐶. 
 
For example, 𝑢𝑡𝑜𝑡𝑎𝑙(1.218,0.681) ≈ 60

𝑜𝐶.  Note 
that 20 terms are used for plotting the graphs. For 
higher accuracy, more terms & more grids can be 
included but computational time will be increased.  
 
Try to verify the answer: 

𝑢𝑡𝑜𝑡𝑎𝑙(1.218,0.681) 

≈ ∑ 𝑒−𝑛
2(0.681) (

200

𝜋
(
1−(−1)𝑛

𝑛
) 𝑠𝑖𝑛(𝑛(1.218)) )20

𝑛=1   

 
-Top view of the 3D plot with the contour, 
i.e. line with same magnitude. 
 
Try to find the location of the plate that 
drops to 4.7619𝑜𝐶 last. 
Hint: max of 𝑢𝑡𝑜𝑡𝑎𝑙  at fixed time ; sin 
characteristic. 
 

 

By increasing the contours, 
we can observe that the 
temperatures of the whole 
bar takes around 7s, in 
order to drop to less than  
0.1𝑜𝐶  due to BC on both 
ends.  
 
 

 

Relationship between Laplace equation and heat equation: 

In the heat equation example:  

𝑘
𝜕2𝑢

𝜕𝑥2
=
𝜕𝑢

𝜕𝑡
 

We observe that the temperature results become stable/ no change after some durations. This means 

that 
𝜕𝑢

𝜕𝑡
= 0 for 𝑡 → ∞  (i.e. change of temperature, 𝑢 over time is zero for sufficient large duration, 𝑡). 

 

Depending on our application, we will go for  

(i) Solving heat equation, 𝑘
𝜕2𝑢

𝜕𝑥2
=
𝜕𝑢

𝜕𝑡
 if we are interested in finding out the change of the 

temperature, 𝑢 over time.  

Note: The solution 𝑢(𝑥, 𝑡) contains the transient solution at beginning and steady state 

solution when 𝑡 → ∞  . 

(ii) Solving Laplace equation, 𝑘
𝜕2𝑢

𝜕𝑥2
= 0 by let 

𝜕𝑢

𝜕𝑡
= 0 only if we are interested in finding out 

the stable temperature without changes over time.  

Note: The solution 𝑢(𝑥) contains the steady state solution only.  

 



14.3 SOLVING PARTICULAR SOLUTION OF HYPERBOLIC PDE (WAVE EQUATION) 

Consider a string of length L, stretched taut between 2 points on x-axis (e.g. x=0 and x=L)., find the 

change of vertical displacement with respect to time and x location, i.e. 𝑢(𝑥, 𝑡). 

 
Transverse vibration u(x, t) in rod of length L 

 
The string is fixed at both ends like guitar string. 

 

 Governing equation for the 1D wave equation 

𝑎2
𝜕2𝑢

𝜕𝑥2
=
𝜕2𝑢

𝜕𝑡2
 

 Boundary condition #1 & #2:  𝑢(0,  𝑡) = 0 , 𝑢(𝐿,  𝑡) = 0                             for 𝑡 > 0 

 

 Initial condition #1 & #2      :   𝑢(𝑥,  0) = 𝑓(𝑥),   
𝜕𝑢

𝜕𝑡
|
𝑡=0

= 𝑔(𝑥)             for 0 < 𝑥 < 𝐿 

Note: For the string’s vibration, 𝑢(𝑥,  0) = initial displacement, while 𝑢𝑡(𝑥,  0) = initial 

velocity. 

 

 

 

Solution:  

Step 1: Using separation of variable method: Let 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡)  

𝑎2𝑋′′𝑇 = 𝑋𝑇′′ 

 

Step 2:  Obtain 2 ODE equations 

𝑋′′

𝑋
=
𝑇′′

𝑎2𝑇
= −λ 

𝑇′′ + 𝑎2λ𝑇 = 0--- (ODE #1) 

𝑋′′ + λ𝑋 = 0 --- (ODE #2) 

 

Case ODE #1 ODE #2 𝑢(𝑥, 𝑦) = 𝑋(𝑥)𝑇(𝑡) 

Case #1: 
(λ=0) 

𝑇′′ = 0     
Let 𝑟 =root  
Characteristic equation:  

𝑟2 = 0 
Repeated root: 

𝑋′′ = 0     
Let 𝑟 =root  
Characteristic equation: 𝑟2 =
0 
Repeated root: 

∴ 𝑢1 = 𝑋1(𝑥)𝑇1(𝑡) 

= (𝑐1 + 𝑐2𝑡 )(𝑐3
+ 𝑐4𝑥 ) 

 



 𝑟1 = 0, 𝑟2 = 0 
 
𝑇(𝑡) = 𝑐1𝑒

0𝑡 + 𝑐2𝑡𝑒
0𝑡 

∴ 𝑇(𝑡) = 𝑐1 + 𝑐2𝑡 
 

 𝑟1 = 0, 𝑟2 = 0 
 
𝑋(𝑥) = 𝑐3𝑒

0𝑥 + 𝑐4𝑥𝑒
0𝑥 

∴ 𝑋(𝑥) = 𝑐3 + 𝑐4𝑥 
 

Case #2: 
(λ=− α2) 
α > 0 

 

𝑇′′ − (𝛼2𝑎2)𝑇 = 0 
Let 𝑟 =root  
Characteristic equation: 

𝑟2 − 𝛼2𝑎2 = 0 
Distinct roots:  

𝑟1 = √𝛼
2𝑎2 = 𝛼𝑎, 

𝑟2 = −√𝛼
2𝑎2 = 𝛼𝑎 

 
 
∴ 𝑇(𝑡) = 𝑐5𝑐𝑜𝑠ℎ(𝛼𝑎𝑡) +
𝑐6𝑠𝑖𝑛ℎ(𝛼𝑎𝑡)   

𝑋′′ − α2𝑋 = 0 
Let 𝑟 =root  
Characteristic equation: 

𝑟2 − 𝛼2 = 0 

𝑟 = ±√α2 = ±α 
 
Distinct roots:  

𝑟1 = α, 𝑟2 = −α 
 
∴ 𝑋(𝑥) = 𝑐7𝑐𝑜𝑠ℎ(𝛼𝑥) +
𝑐8𝑠𝑖𝑛ℎ(𝛼𝑥)   
 

∴ 𝑢2 = 𝑋2(𝑥)𝑇2(𝑡) 

= (𝑐5 𝑐𝑜𝑠ℎ(𝛼𝑎𝑡)

+ 𝑐6 𝑠𝑖𝑛ℎ(𝛼𝑎𝑡)  ).   
(𝑐7𝑐𝑜𝑠ℎ(𝛼𝑥)
+ 𝑐8𝑠𝑖𝑛ℎ(𝛼𝑥)) 

Case #3: 
(λ=+ α2) 
α > 0 

 

𝑇′′ + 𝛼2𝑎2𝑇 = 0 
Let 𝑟 =root  
Characteristic equation: 
𝑟2 + 𝛼2𝑎2 = 0  
 
Complex conjugate roots: 
𝑟1 = α𝑎𝑖, 𝑟2 = −α𝑎𝑖 
 

∴ 𝑇(𝑡) = 𝑐9𝑐𝑜𝑠(𝛼𝑎𝑡) +
𝑐10𝑠𝑖𝑛(𝛼𝑎𝑡)   
 

𝑋′′ + (α2)𝑋 = 0 
Let 𝑟 =root  
Characteristic equation: 

𝑟2 + α2 = 0 

𝑟 = ±√−α2 = ±𝛼𝑖 
 
Complex conjugate roots: 
𝑟1 = α𝑖, 𝑟2 = −α𝑖 
 

∴ 𝑋(𝑥) = 𝑐11𝑐𝑜𝑠(𝛼𝑥) +
𝑐12𝑠𝑖𝑛(𝛼𝑥)   
 

∴ 𝑢3 = 𝑋3(𝑥)𝑇3(𝑡) 
 

= (𝑐9 𝑐𝑜𝑠(𝛼𝑎𝑡)

+ 𝑐10 𝑠𝑖𝑛(𝛼𝑎𝑡)  ).   

(𝑐11𝑐𝑜𝑠(𝛼𝑥)

+ 𝑐12𝑠𝑖𝑛(𝛼𝑥) ) 

In fact, we can find the general PDE solution to the problem by using superposition principle: 

𝑢(𝑥, 𝑡) = (𝑐1 + 𝑐2𝑡 )(𝑐3 + 𝑐4𝑥 )⏟              
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑜𝑓𝐶𝑎𝑠𝑒1

+ (𝑐5 𝑐𝑜𝑠ℎ(𝛼𝑎𝑡) + 𝑐6 𝑠𝑖𝑛ℎ(𝛼𝑎𝑡))(𝑐7𝑐𝑜𝑠ℎ(𝛼𝑥) + 𝑐8𝑠𝑖𝑛ℎ(𝛼𝑥))⏟                                      
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑜𝑓𝐶𝑎𝑠𝑒2

 

                    +(𝑐9 𝑐𝑜𝑠(𝛼𝑎𝑡) + 𝑐10 𝑠𝑖𝑛(𝛼𝑎𝑡))(𝑐11𝑐𝑜𝑠(𝛼𝑥) + 𝑐12𝑠𝑖𝑛(𝛼𝑥) )⏟                                    
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑜𝑓𝐶𝑎𝑠𝑒3

 

where there are 12 unknown coefficients (𝑐1 − 𝑐12).Next, we will continue to solve those unknowns 

by applying the initial/ boundary conditions.  

 

To apply the following boundary conditions.  

Boundary condition (BC) #1: 𝑢(0,  𝑡) = 0 ,   BC #2: 𝑢(𝐿,  𝑡) = 0 

Case Applying BC #1 & BC #2 

Case #1: 
(λ=0) 

 𝑢1 = 𝑋1(𝑥)𝑇1(𝑡) 

= (𝑐1 + 𝑐2𝑡 )(𝑐3 + 𝑐4𝑥 ) 

Applying BC #1: 𝑢1(0, 𝑡) = (𝑐1 + 𝑐2𝑡 )(𝑐3) = 0    
Note: vibration is changing wrt time, thus 𝑇(𝑡) ≠0 for non-trivial solution.  

Since (𝑐1 + 𝑐2𝑡 ) ≠ 0 , thus 𝑐3 = 0 

→ 𝑢1 = (𝑐1 + 𝑐2𝑡 )(𝑐4𝑥 ) 



 

Applying BC #2, we get 𝑢1(𝐿, 𝑡) = (𝑐1 + 𝑐2𝑡 )(𝑐4𝐿 ) = 0                     

Since (𝑐1 + 𝑐2𝑡 ) ≠ 0 , 𝐿 ≠ 0, thus  𝑐4 = 0 

 
∴ 𝑢1(𝑥, 𝑡) = 0 (No solution) 

Case #2: 
(λ=− α2) 
α > 0 

 

𝑢2 = 𝑋2(𝑥)𝑇2(𝑡) 
= (𝑐5 𝑐𝑜𝑠ℎ(𝛼𝑎𝑡) + 𝑐6 𝑠𝑖𝑛ℎ(𝛼𝑎𝑡))(𝑐7𝑐𝑜𝑠ℎ(𝛼𝑥) + 𝑐8𝑠𝑖𝑛ℎ(𝛼𝑥)) 

 

Applying BC #1: 𝑢2(0, 𝑡) = (𝑐5𝑐𝑜𝑠ℎ(𝛼𝑎𝑡) + 𝑐6𝑠𝑖𝑛ℎ(𝛼𝑎𝑡) )(𝑐7) = 0 

Since (𝑐5𝑐𝑜𝑠ℎ(𝛼𝑎𝑡) + 𝑐6𝑠𝑖𝑛ℎ(𝛼𝑎𝑡) ) ≠ 0 , thus 𝑐7 = 0 

 
→ 𝑢2(𝑥, 𝑡) = (𝑐5 𝑐𝑜𝑠ℎ(𝛼𝑎𝑡) + 𝑐6 𝑠𝑖𝑛ℎ(𝛼𝑎𝑡))(𝑐8𝑠𝑖𝑛ℎ(𝛼𝑥)) 

 
Applying BC #2: 𝑢2(𝐿, 𝑡) = (𝑐5 𝑐𝑜𝑠ℎ(𝛼𝑎𝑡) + 𝑐6 𝑠𝑖𝑛ℎ(𝛼𝑎𝑡))(𝑐8𝑠𝑖𝑛ℎ(𝛼𝐿)) = 0 
Since (𝑐5 𝑐𝑜𝑠ℎ(𝛼𝑎𝑡) + 𝑐6 𝑠𝑖𝑛ℎ(𝛼𝑎𝑡)) ≠ 0, 𝑠𝑖𝑛ℎ(𝛼𝐿) ≠ 0 for 𝛼𝐿 > 0, 
thus 𝑐8 = 0 

∴ 𝑢2(𝑥, 𝑡) = 0 (No solution) 

Case #3: 
(λ=+ α2) 
α > 0 

 

∴ 𝑢3 = 𝑋3(𝑥)𝑇3(𝑡) 

= (𝑐9 𝑐𝑜𝑠(𝛼𝑎𝑡) + 𝑐10 𝑠𝑖𝑛(𝛼𝑎𝑡))(𝑐11𝑐𝑜𝑠(𝛼𝑥) + 𝑐12𝑠𝑖𝑛(𝛼𝑥) ) 
 
Applying BC #1:  𝑢3(0, 𝑡) = (𝑐9 𝑐𝑜𝑠(𝛼𝑎𝑡) + 𝑐10 𝑠𝑖𝑛(𝛼𝑎𝑡))(𝑐11) = 0 
Since (𝑐9 𝑐𝑜𝑠(𝛼𝑎𝑡) + 𝑐10 𝑠𝑖𝑛(𝛼𝑎𝑡)) ≠ 0,thus 𝑐11 = 0 

→ 𝑢3 = (𝑐9 𝑐𝑜𝑠(𝛼𝑎𝑡) + 𝑐10 𝑠𝑖𝑛(𝛼𝑎𝑡))(𝑐12𝑠𝑖𝑛(𝛼𝑥) ) 
 

Applying BC #2: 𝑢3(𝐿, 𝑡) = (𝑐9𝑐𝑜𝑠(𝛼𝑎𝑡) + 𝑐10𝑠𝑖𝑛(𝛼𝑎𝑡) ) (𝑐12𝑠𝑖𝑛(𝛼𝐿) ) = 0 

Since (𝑐9 𝑐𝑜𝑠(𝛼𝑎𝑡) + 𝑐10 𝑠𝑖𝑛(𝛼𝑎𝑡)) ≠ 0 and 𝑐12 ≠ 0 𝑤ℎ𝑒𝑛 𝑠𝑖𝑛(𝛼𝐿)=0   for 

α𝐿 = 𝑛𝜋, where α =
𝑛𝜋

𝐿
 , 𝑛 = 1,2,3… 

 
There are infinite solutions in Case #3: 

𝑢3,𝑛 = (𝑐9,𝑛 𝑐𝑜𝑠 (
𝑛𝜋𝑎

𝐿
𝑡) + 𝑐10,𝑛 𝑠𝑖𝑛 (

𝑛𝜋𝑎

𝐿
𝑡)) (𝑐12,𝑛𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑥) )  

,where 𝑛 =1,2,3,… 

In summary, the eigenvalue and eigenfunction of the PDE for each case are listed below: 

Case PDE solution Eigenvalue and eigenfunction of PDE 

Case #1: 
(λ=0) 

𝑢1(𝑥, 𝑡) = 0 

No solution  
hence no eigenvalue and no 

eigenfunction 
 

Case #2: 
(λ=− α2) 
α > 0 

 

𝑢2(𝑥, 𝑡) = 0 

No solution  
hence no eigenvalue and no 

eigenfunction 
 

Case #3: 
(λ=+ α2) 
α > 0 

 

𝑢3,𝑛 = (𝑐9,𝑛 𝑐𝑜𝑠 (
𝑛𝜋𝑎

𝐿
𝑡) +

𝑐10,𝑛 𝑠𝑖𝑛 (
𝑛𝜋𝑎

𝐿
𝑡)) (𝑐12,𝑛𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑥) )  

Eigenvalue, λ𝑛=+ 𝛼𝑛
2 = (

𝑛𝜋

𝐿
)
2

 

Eigenfunction 𝑢3,𝑛 

= (𝑐9,𝑛 𝑐𝑜𝑠 (
𝑛𝜋𝑎

𝐿
𝑡) +

𝑐10,𝑛 𝑠𝑖𝑛 (
𝑛𝜋𝑎

𝐿
𝑡)) (𝑐12,𝑛𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑥) )  

 



Step 4:   Superposition Principle to find 𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) = 𝑋1𝑇1 + 𝑋2𝑇2 + 𝑋3𝑇3 

𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) = ∑ (𝑐9,𝑛 𝑐𝑜𝑠 (
𝑛𝜋𝑎

𝐿
𝑡) + 𝑐10,𝑛 𝑠𝑖𝑛 (

𝑛𝜋𝑎

𝐿
𝑡)) (𝑐12,𝑛𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑥) )

∞

𝑛=1⏟                                      
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑓𝑟𝑜𝑚𝐶𝑎𝑠𝑒3

 

where there are 3 remaining unknowns (i.e. 𝑐9,𝑛, 𝑐10,𝑛, &𝑐12,𝑛). 

 

By expanding it, we can reduce the unknowns into 2 (i.e. 𝐴3,n, 𝐵3,𝑛), as shown in displacement solution. 

𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦) = ∑𝐴3,n 𝑐𝑜𝑠 (
𝑛𝜋𝑎

𝐿
𝑡) (𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑥) ) + (𝐵3,𝑛𝑠𝑖𝑛(

𝑛𝜋𝑎

𝐿
𝑡) (𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑥) ))

∞

𝑛=1

 

Differentiate the displacement solution wrt 𝑡, then we obtain the velocity solution. 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= ∑ (−𝐴3,𝑛

𝑛𝜋𝑎

𝐿
𝑠𝑖𝑛(

𝑛𝜋𝑎

𝐿
𝑡) (𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑥) )  )

∞

𝑛=1

+∑(𝐵3,𝑛
𝑛𝜋𝑎

𝐿
𝑐𝑜𝑠(

𝑛𝜋𝑎

𝐿
𝑡) (𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑥) ))

∞

𝑛=1

 

 

Step 5:  Continue to apply the remaining IC & Fourier series expansion. 

IC #1: 𝑢(𝑥,  0) = 𝑓(𝑥) for 0 < 𝑥 < 𝐿 

𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 0) = ∑ (𝐴3,𝑛 (𝑠𝑖𝑛(
𝑛𝜋

𝐿
𝑥) )  )∞

𝑛=1 = 𝑓(𝑥)  

 

 

 

 

Recall Half-range Fourier Sine Series Expansion: 

𝑓(𝑥) = ∑ (𝑏𝑛 𝑠𝑖𝑛 𝑛𝜔𝑥)
∞
𝑛=1   

where 𝑏𝑛 =
2

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝜔𝑥 𝑑𝑥

τ

0
  

 

Precaution: 𝐿 in the formula indicates the half period, i.e. 𝐿 =
𝑝

2
=

𝜋

𝜔
. Do not mix it with the length 

of the 1D string, which is using the same symbol, 𝐿 as well.  
 
Note that for (i) Half-range expansion: Finite interval, τ = ℎ𝑎𝑙𝑓𝑝𝑒𝑟𝑖𝑜𝑑, 𝐿  

 (ii) Full-range expansion:  Finite interval, τ = 𝑓𝑢𝑙𝑙𝑝𝑒𝑟𝑖𝑜𝑑, 2𝐿  

We notice 𝐴3,𝑛 = 𝑏𝑛 =
2

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝜔𝑥 𝑑𝑥

τ

0
 ,  

where 𝜔 =
𝜋

𝐿
  & 

From 0 < 𝑥 < 𝐿, τ = 𝑙𝑒𝑛𝑔𝑡ℎ,L. For half-range expansion, τ = ℎ𝑎𝑙𝑓𝑝𝑒𝑟𝑖𝑜𝑑,L. Thus, in this 

case it happens to have finite interval, τ = ℎ𝑎𝑙𝑓𝑝𝑒𝑟𝑖𝑜𝑑,L = 𝑙𝑒𝑛𝑔𝑡ℎ,L in this special case.  

Precaution: Note that it would be different for full-range expansion case.  



 

→ 𝐴3,𝑛 =
2

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛

𝜋

𝐿
𝑥 𝑑𝑥

L

0
  

 

Step 5:  Continue to apply the remaining IC & Fourier series expansion. 

IC #2: 𝑢𝑡(𝑥,  0) = 𝑔(𝑥) for 0 < 𝑥 < 𝐿 

𝜕𝑢(𝑥,0)

𝜕𝑡
= ∑ (𝐵3,𝑛

𝑛𝜋𝑎

𝐿
(𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑥) )  )∞

𝑛=1 = 𝑔(𝑥)  

 

Recall Half-range Fourier Sine Series Expansion: 

𝑔(𝑥) = ∑ (𝑏𝑛 𝑠𝑖𝑛 𝑛𝜔𝑥)
∞
𝑛=1   

where 𝑏𝑛 =
2

𝐿
∫ 𝑔(𝑥) 𝑠𝑖𝑛 𝑛𝜔𝑥 𝑑𝑥

τ

0
   

We notice 𝐵3,𝑛
𝑛𝜋𝑎

𝐿
= 𝑏𝑛 =

2

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛𝜔𝑥 𝑑𝑥

τ

0
 ,  

where  𝜔 =
𝜋

𝐿
  ;  

From 0 < 𝑥 < 𝐿, τ = 𝑙𝑒𝑛𝑔𝑡ℎ,L. For half-range expansion, τ = ℎ𝑎𝑙𝑓𝑝𝑒𝑟𝑖𝑜𝑑,L. Thus, in this 

case it happens to have finite interval, τ = ℎ𝑎𝑙𝑓𝑝𝑒𝑟𝑖𝑜𝑑,L = 𝑙𝑒𝑛𝑔𝑡ℎ,L in this special case.  

→ 𝐵3,𝑛
𝑛𝜋𝑎

𝐿
=
2

𝐿
∫ 𝑔(𝑥) 𝑠𝑖𝑛 𝑛

𝜋

𝐿
𝑥 𝑑𝑥

L

0
  

→ 𝐵3,𝑛 =
2

𝑛𝜋𝑎
∫ 𝑔(𝑥) 𝑠𝑖𝑛 𝑛

𝜋

𝐿
𝑥 𝑑𝑥

𝐿

0
  

 

 

 

Thus, we have solved all the unknowns and obtain the particular PDE solution: 

∴ 𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) = ∑𝐴3,n 𝑐𝑜𝑠 (
𝑛𝜋𝑎

𝐿
𝑡) (𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑥) ) + (𝐵3,𝑛𝑠𝑖𝑛(

𝑛𝜋𝑎

𝐿
𝑡) (𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑥) ))

∞

𝑛=1

 

𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) = ∑
2

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛

𝜋

𝐿
𝑥 𝑑𝑥

L

0

𝑐𝑜𝑠 (
𝑛𝜋𝑎

𝐿
𝑡) (𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑥) )

∞

𝑛=1

+ (
2

𝑛𝜋𝑎
∫ 𝑔(𝑥) 𝑠𝑖𝑛 𝑛

𝜋

𝐿
𝑥 𝑑𝑥

𝐿

0

𝑠𝑖𝑛(
𝑛𝜋𝑎

𝐿
𝑡) (𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑥) )) 

 

Example: Let the initial displacement, 𝑓(𝑥) = 𝑥(𝐿 − 𝑥)  , initial velocity, 𝑔(𝑥) = 0, dimension, 

𝑙𝑒𝑛𝑔𝑡ℎ, 𝐿 = 1, PDE coefficient, 𝑎 = 1  for the previous problem. 

𝐴3,𝑛 =
2

𝐿
∫ 𝑓(𝑥) 𝑠𝑖𝑛 𝑛

𝜋

𝐿
𝑥 𝑑𝑥

L

0

 𝐵3,𝑛 =
2

𝑛𝜋𝑎
∫ 𝑔(𝑥) 𝑠𝑖𝑛 𝑛

𝜋

𝐿
𝑥 𝑑𝑥

𝐿

0

 



=
2

1
∫ 𝑥(1 − 𝑥) 𝑠𝑖𝑛 𝑛

𝜋

1
𝑥 𝑑𝑥

1

0

 

= 2 [∫ 𝑥 𝑠𝑖𝑛 𝑛𝜋𝑥 𝑑𝑥
1

0

−∫ 𝑥2 𝑠𝑖𝑛 𝑛𝜋𝑥 𝑑𝑥
1

0

] 

 

= 2 [
sin𝑛𝜋 − 𝑛𝜋𝑐𝑜𝑠𝑛𝜋

𝑛2𝜋2

−
2𝑛𝜋𝑠𝑖𝑛𝑛𝜋 + (2 − 𝑛2𝜋2)𝑐𝑜𝑠𝑛𝜋 − 2

𝑛3𝜋3
] 

= [−
2𝑛𝜋𝑠𝑖𝑛𝑛𝜋 + 4𝑐𝑜𝑠𝑛𝜋 − 4

𝑛3𝜋3
] 

 

=
2

𝑛𝜋(1)
∫ (0) 𝑠𝑖𝑛 𝑛

𝜋

𝐿
𝑥 𝑑𝑥

1

0

 

= 0 

∴ 𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) = ∑𝐴3,n 𝑐𝑜𝑠 (
𝑛𝜋𝑎

𝐿
𝑡) (𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑥) ) + (𝐵3,𝑛𝑠𝑖𝑛(

𝑛𝜋𝑎

𝐿
𝑡) (𝑠𝑖𝑛(

𝑛𝜋

𝐿
𝑥) ))

∞

𝑛=1

 

                         = ∑ −
2𝑛𝜋𝑠𝑖𝑛𝑛𝜋+4𝑐𝑜𝑠𝑛𝜋−4

𝑛3𝜋3
𝑐𝑜𝑠(𝑛𝜋𝑡)(𝑠𝑖𝑛(𝑛𝜋𝑥) )∞

𝑛=1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can use the PDE solution to estimate the vibration at any point on the string. Example: The 

vibration results at 100 × 500 points of the (𝑥, 𝑡) locations for a duration of 5s have been plotted 

below: 

 

3D plot of 𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) wrt 𝑥- & 𝑡- axes 2D plot 



 
-Due to boundary conditions on both sides of the 1D 
string  and the initial displacement of the rod, the 
vertical displacement of the string changes over time. 
 
For example, 𝑢𝑡𝑜𝑡𝑎𝑙(0.2727,1.1523) ≈ −0.1751. 
Note that 20 terms are used for plotting the graphs. 
For higher accuracy, more terms & more grid can be 
included but computational time will be increased.  
 
Try to verify the answer: 

𝑢𝑡𝑜𝑡𝑎𝑙(0.2727,1.1523) 
 

≈ ∑ [
−
2𝑛𝜋𝑠𝑖𝑛𝑛𝜋+4𝑐𝑜𝑠𝑛𝜋−4

𝑛3𝜋3
.

𝑐𝑜𝑠(1.1523𝑛𝜋) (𝑠𝑖𝑛(0.2727𝑛𝜋) )
]20

𝑛=1   

From 𝑡 = 0 to 𝑡 = 0.992 

 
 
From 𝑡 = 1.002 to 𝑡 = 1.994 

 

 

Note that the transverse vibration solution, 𝑢𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡)  due to the initial displacement does not 

diminish over time, this is because the original PDE equation is excluding the damping component for 

an ideal case with no energy loss. 

Wave equation without damping component: 𝑎2
𝜕2𝑢

𝜕𝑥2
=
𝜕2𝑢

𝜕𝑡2
   

 

To represent the actual system with friction/ energy loss, damping component, 𝑘 can be included as 

such 

Wave equation with damping component: 𝑎2
𝜕2𝑢

𝜕𝑥2
=
𝜕2𝑢

𝜕𝑡2
+ 𝑘

𝜕𝑢

𝜕𝑡
 

 

Same separation of variable method can be used to solve the damped case, thus the steps are 

excluded for brevity.   


