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SOLUTIONS TO HOMOGENEOUS 

LINEAR 2ND ORDER ODE 
WEEK 3: SOLUTIONS TO HOMOGENEOUS LINEAR 2 N D  ORDER ODE 

3.1 INTRODUCTION TO 2 ND  ORDER ODE 

We started the discussion of ordinary differential equations (ODE) with the 1st order ODE. The order of 

a differential equation is the degree of the highest derivative that occurs in the equation. Based on this 

definition, a 2nd order ODE has the second order derivative in the differential equation. To give a quick 

example, 
𝑑2𝑦

𝑑𝑥2 + 5
𝑑𝑦

𝑑𝑥
+ 4𝑦 = 0 is a 2nd order ODE. 

 

As discussed before, the differential equation is important, because many engineering or physical 

scenarios have behaviors or responses that are represented (a.k.a. modeled) as ordinary differential 

equations (ODE). However, not every scenario can be modeled by the 1st order ODE. We use a basic 

circuit scenario to illustrate this point. 

 

Example 3.1: 

1st order ODE 2nd order ODE 

1st order differential equation is sufficient to model 
an simple electrical circuit with just a resistor and a 
capacitor in series (known as the RC circuit): 

 

 

 

The potential differences are: 

Resistor: 𝛥𝑉(𝑡) = (𝑉𝐵 − 𝑉𝐴) = 𝑅𝑖(𝑡) = 𝑅
𝑑𝑞(𝑡)

𝑑𝑡
 

Capacitor: 𝛥𝑉(𝑡) = (𝑉𝐹 − 𝑉𝐵) =
1

𝐶
𝑞(𝑡) 

where q(t) is the charge and i(t) is the rate of 

However, if the electrical circuit also contains an 
inductor in series (known as the RLC circuit), then: 

 

 

 

The potential differences are: 

Resistor: 𝛥𝑉(𝑡) = (𝑉𝐵 − 𝑉𝐴) = 𝑅𝑖(𝑡) = 𝑅
𝑑𝑞(𝑡)

𝑑𝑡
 

Capacitor: 𝛥𝑉(𝑡) = (𝑉𝐹 − 𝑉𝐵) =
1

𝐶
𝑞(𝑡) 

Inductor: 𝛥𝑉(𝑡) = (𝑉𝐷 − 𝑉𝐹) = 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
= 𝐿

𝑑2𝑞(𝑡)

𝑑𝑡2  
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change of charge which is the current. 

 

By Kirchoff’s voltage law, considering the single 
voltage loop, an equation that relates all voltages 
can be formed: 

 

𝑅
𝑑𝑞(𝑡)

𝑑𝑡
+

1

𝐶
𝑞(𝑡) = 𝐸(𝑡)  

 

 

 

Again, by Kirchoff’s voltage law, the equation that 
describes this single voltage loop becomes: 

 

𝐿
𝑑2𝑞(𝑡)

𝑑𝑡2 + 𝑅
𝑑𝑞(𝑡)

𝑑𝑡
+

1

𝐶
𝑞(𝑡) = 𝐸(𝑡)  

 

Extra Info: According to Kirchhoff’s voltage law, the sum of all the voltages around any closed network / 

loop is equal to zero. In other words, all the voltage drops equal to the input or supplied voltage(s). 

 

Just as the 1st order ODE, the concepts of homogeneity and linearity of a differential equation apply to 

2nd order ODE as well. As a recap, for an nth order ODE: 

𝑎𝑛(𝑥)𝑦(𝑛) + 𝑎𝑛−1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑎2(𝑥)𝑦′′ + 𝑎1(𝑥)𝑦′ + 𝑎0(𝑥)𝑦 = 𝑔(𝑥) 

 

the ODE is linear if all the coefficients 𝑎𝑛 do not contain product with the dependent variable or its 

derivatives, and the derivatives themselves are of the first power only. Meanwhile, within the context of 

linear ODE, an ODE is homogeneous if the RHS, 𝑔(𝑥) = 0, and non-homogeneous if 𝑔(𝑥) ≠ 0. The 

following are some examples of 2nd order ODE that show linearity and homogeneity: 

 

(1) Linear ODE example: 

𝑑2𝑦

𝑑𝑥2 + 5𝑥
𝑑𝑦

𝑑𝑥
+ 4𝑦 = 𝑥2  

 

(2) Non-linear ODE example: 

𝒚
𝑑2𝑦

𝑑𝑥2
+ 5𝑥𝑦 (

𝑑𝑦

𝑑𝑥
)

𝟐

+ 4𝑦 = 𝑥2 𝐜𝐨𝐬 𝒚 

 

(3) Homogeneous linear ODE example: 

𝑑2𝑦

𝑑𝑥2 + 5
𝑑𝑦

𝑑𝑥
+ 4𝑦 = 0  

 

(4) Non-homogeneous linear ODE example: 

𝑑2𝑦

𝑑𝑥2 + 5
𝑑𝑦

𝑑𝑥
+ 4𝑦 = 𝐜𝐨𝐬 𝒙  

 

 

In this topic, we focus on solving the homogeneous linear 2nd order ODE, especially the type displayed 

by example (3) above, in which the coefficients of all terms are constants. 
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3.2 LINEARITY PRINCIPLE AND LINEAR DEPENDENCY OF SOLUTIONS  

For a 2nd order ODE, it is usually expected that the complete solution consists of more than one 

component, and the complete solution is obtained as a linear combination of all the component 

solutions that satisfy the ODE. Therefore, before we proceed to the strategy of solving 2nd order ODEs, 

we should get ourselves familiar with the linearity principle and linear dependency of solutions. 

 

The importance of the theory is illustrated in the following example: 

It is given that the ODE 
𝑑2𝑦(𝑥)

𝑑𝑥2 − 4
𝑑𝑦(𝑥)

𝑑𝑥
+ 3𝑦(𝑥) = 0 has two possible solutions, namely 𝑦1 = 𝑒3𝑥 and 

𝑦2 = 𝑒𝑥. Since a solution must satisfy the equation, let us verify that these two are indeed possible 

solutions: 

 

Case (1): Assume the solution is 𝑦1 = 𝑒3𝑥 

Verification: 

𝑦1 = 𝑒3𝑥  

>> 
𝑑𝑦1

𝑑𝑥
= 3𝑒3𝑥 

>> 
𝑑2𝑦1

𝑑𝑥2 = 9𝑒3𝑥 

 

Substitute to LHS 

𝑑2𝑦(𝑥)

𝑑𝑥2 − 4
𝑑𝑦(𝑥)

𝑑𝑥
+ 3𝑦(𝑥) = 9𝑒3𝑥 − 4(3𝑒3𝑥) + 3𝑒3𝑥 = 0 

>> LHS = RHS = 0 

∴ 𝑦1 = 𝑒3𝑥 is proven to be the solution of  
𝑑2𝑦(𝑥)

𝑑𝑥2 − 4
𝑑𝑦(𝑥)

𝑑𝑥
+ 3𝑦(𝑥) = 0 

 

 

Case (2): Assume the solution is 𝑦2 = 𝑒𝑥 

Verification: 

𝑦2 = 𝑒𝑥  

>> 
𝑑𝑦2

𝑑𝑥
= 𝑒𝑥 

>> 
𝑑2𝑦2

𝑑𝑥2 = 𝑒𝑥 

 

Substitute to LHS 
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𝑑2𝑦(𝑥)

𝑑𝑥2 − 4
𝑑𝑦(𝑥)

𝑑𝑥
+ 3𝑦(𝑥) = 𝑒𝑥 − 4(𝑒𝑥) + 3𝑒𝑥 = 0 

>> LHS = RHS = 0 

∴ 𝑦2 = 𝑒𝑥 is proven to be the solution of   
𝑑2𝑦(𝑥)

𝑑𝑥2 − 4
𝑑𝑦(𝑥)

𝑑𝑥
+ 3𝑦(𝑥) = 0 

 

 

If we linearly combine 𝑦1 = 𝑒3𝑥 and 𝑦2 = 𝑒𝑥, we obtain 𝑦𝑐 = 𝑐1𝑒3𝑥 + 𝑐2𝑒𝑥 which interestingly also 

satisfies the ODE (see Case(3)). Since satisfying the equation is the criterion of being a solution, then 

𝑦𝑐 = 𝑐1𝑒3𝑥 + 𝑐2𝑒𝑥 is a solution to the ODE as well. In fact, all the three solutions satisfy the ODE and 

thus they are true solutions. 

 

Case (3): Assume the solution is 𝑦𝑐 = 𝑐1𝑒3𝑥 + 𝑐2𝑒𝑥 

Verification: 

𝑦𝑐 = 𝑐1𝑒3𝑥 + 𝑐2𝑒𝑥  

>> 
𝑑𝑦𝑐

𝑑𝑥
= 3𝑐1𝑒3𝑥 + 𝑐2𝑒𝑥 

>> 
𝑑2𝑦𝑐

𝑑𝑥2 = 9𝑐1𝑒3𝑥 + 𝑐2𝑒𝑥 

 

Substitute to LHS 

𝑑2𝑦(𝑥)

𝑑𝑥2 − 4
𝑑𝑦(𝑥)

𝑑𝑥
+ 3𝑦(𝑥) = (9𝑐1𝑒3𝑥 + 𝑐2𝑒𝑥) − 4(3𝑐1𝑒3𝑥 + 𝑐2𝑒𝑥) + 3(𝑐1𝑒3𝑥 + 𝑐2𝑒𝑥) = 0 

>> LHS = RHS=0 

∴ 𝑦𝑐 = 𝑐1𝑒3𝑥 + 𝑐2𝑒𝑥 is proven to be the solution of  
𝑑2𝑦(𝑥)

𝑑𝑥2 − 4
𝑑𝑦(𝑥)

𝑑𝑥
+ 3𝑦(𝑥) = 0 

 

 

The complete solution is formed according to Linearity Principle / Principle of Superposition as follows: 

Linearity Principle / Principle of Superposition: 

If 𝑦1 & 𝑦2 are both solutions  

of the homogeneous linear differential equation. 

 

Then so is the solution 𝑦𝑐 = 𝑐1𝑦1 + 𝑐2𝑦2  

where 𝑐1 & 𝑐2 are arbitrary constants. 
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Note 1: So, the solution of the 2nd order ODE 
𝑑2𝑦(𝑥)

𝑑𝑥2 − 4
𝑑𝑦(𝑥)

𝑑𝑥
+ 3𝑦(𝑥) = 0 is not purely 𝑦1 = 𝑒3𝑥 or 

𝑦2 = 𝑒𝑥. 

Note 2: If a 2nd order linear ODE is encountered, the complete solution will be equal to 𝑦 = 𝑐1𝑦1 +

𝑐2𝑦2 = 𝑐1𝑒3𝑥 + 𝑐2𝑒𝑥. 

 

In conclusion, the general complementary solution of a homogeneous linear ODE is equal to 

𝑦 = 𝑐1𝑦1(𝑥) + 𝑐2𝑦2(𝑥) 

where 𝑦1(𝑥) & 𝑦2(𝑥) are known as the linearly independent solutions to the equation. 

 

Linearly dependent vs linearly independent solutions: According to the linear dependency theorem, 

solutions are independent to one another if their linear combination is zero only when all the constants 

of proportionality are zero. Otherwise, if their linear combination can be zero with one or more 

constants of proportionality being non-zero, then these solutions are considered dependent to one 

another. For example, 𝑦1 = 𝑒𝑥 and 𝑦2 = 2𝑒𝑥 are known to be linearly dependent on each other (see 

table below). 

A complete solution should have linearly independent component solutions. If two solutions are linearly 

dependent, it means these two solutions are redundant and hence they do not represent two 

independent solutions instead of one. This can be illustrated by the same example:   

𝑦 = 𝑒𝑥 + 2𝑒𝑥 = (1 + 2)𝑒𝑥 (only represent one solution). 

We can use the following two methods to check whether two solutions are linearly independent to each 

other or not: (a) the Linear Dependency Theorem itself, and (b) Wronskian Method. 

Let 𝑥 = independent variable; 𝑦 = dependent variable 

 Method 1 
(Linear Dependency Theorem) 

(i) Linearly dependent 

[Undesired solutions for 
ODE] 

𝑦1(𝑥) & 𝑦2(𝑥) are linearly dependent 

if 𝑐1𝑦1(𝑥) + 𝑐2𝑦2(𝑥) = 0  

where 𝑐1 & 𝑐2 ≠ 0 

 

Or in other words, 

𝑦1(𝑥) & 𝑦2(𝑥) are proportional to each other 

For example:  

Check if 𝑦1 = 𝑒𝑥  & 𝑦2 =
2𝑒𝑥 are linearly dependent 
or not. 

Solution: 

If 𝑦1 = 𝑒𝑥 & 𝑦2 = 2𝑒𝑥 are linearly dependent, 𝑐1𝑒𝑥 + 𝑐2(2𝑒𝑥) = 0, where  
𝑐1 & 𝑐2 ≠ 0. 
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It was found that when 𝑐1 = −2 & 𝑐2 = 1,  

𝑐1𝑒𝑥 + 𝑐2(2𝑒𝑥) = −2𝑒𝑥 + 2𝑒𝑥 = 0 

 

∴ Thus,  𝑦1 = 𝑒𝑥 & 𝑦2 = 2𝑒𝑥  are linearly dependent. 

 

(ii) Linearly independent 

[Desired solutions for ODE] 

𝑦1(𝑥) & 𝑦2(𝑥) are linearly independent 

if 𝑐1𝑦1(𝑥) + 𝑐2𝑦2(𝑥) = 0  

only when 𝑐1 & 𝑐2 = 0 

 

Or in other words, 

𝑦1(𝑥) & 𝑦2(𝑥) are not proportional to each other 

For example:  

Check if 𝑦1 = 𝑒𝑥 &  𝑦2 =
𝑒3𝑥 are linearly dependent 
or not. 

 

Solution: 

If  𝑦1 = 𝑒𝑥 & 𝑦2 = 𝑒3𝑥 are linearly independent, 𝑐1𝑒𝑥 + 𝑐2(2𝑒𝑥) = 0, only 
when 𝑐1 & 𝑐2 = 0. 

 

It was found that only when 𝑐1 = 0 & 𝑐2 = 0,  

𝑐1𝑒𝑥 + 𝑐2(𝑒3𝑥) = 0𝑒𝑥 + 0𝑒3𝑥 = 0 

 

∴ Thus,  𝑦1 = 𝑒𝑥 & 𝑦2 = 𝑒3𝑥  are linearly independent.  

 

Note:  

If linearly dependent solutions are obtained, 

i.e. 𝑦1 & 𝑦2 are linearly dependent, 

we do not obtained a complete solution of 

𝑦 = 𝑐1𝑦1(𝑥) + 𝑐2𝑦2(𝑥). 

 

Thus, extra effort / treatment should be continued 

to obtain another solution which is linearly independent, 

i.e. 𝑦1 & 𝑦2 are linearly independent. 
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 Method 2 
(Wronskian, 𝑊(𝑦1, 𝑦2)) 

(i) Linearly dependent 

[Undesired solutions for ODE] 

𝑦1(𝑥) & 𝑦2(𝑥) are linearly dependent if 

𝑊(𝑦1, 𝑦2) = |

𝑦1 𝑦2

𝑑𝑦1

𝑑𝑥

𝑑𝑦2

𝑑𝑥

| = 0 

For example:  

Check if 𝑦1 = 𝑒𝑥 & 𝑦2 = 2𝑒𝑥  
are linearly dependent or 
not. 

 

 

Solution: 

𝑦1 = 𝑒𝑥 

>> 
𝑑𝑦1

𝑑𝑥
= 𝑒𝑥 

 

𝑦2 = 2𝑒𝑥 

>>
𝑑𝑦2

𝑑𝑥
= 2𝑒𝑥 

 

𝑊(𝑦1, 𝑦2) = |
𝑦1 𝑦2

𝑑𝑦1

𝑑𝑥

𝑑𝑦2

𝑑𝑥

| = |
𝑒𝑥 2𝑒𝑥

𝑒𝑥 2𝑒𝑥| = 𝑒𝑥(2𝑒𝑥) − 𝑒𝑥(2𝑒𝑥) = 0  

 

∴ Thus,  𝑦1 = 𝑒𝑥 & 𝑦2 = 2𝑒𝑥  are linearly dependent. 

(ii) Linearly independent 

[Desired solutions for ODE] 

𝑦1(𝑥) & 𝑦2(𝑥) are linearly independent if 

𝑊(𝑦1, 𝑦2) = |

𝑦1 𝑦2

𝑑𝑦1

𝑑𝑥

𝑑𝑦2

𝑑𝑥

| ≠ 0 

For example:  

Check if 𝑦1 = 𝑒𝑥 &  𝑦2 = 𝑒3𝑥 
are linearly dependent or 
not. 

 

𝑦1 = 𝑒𝑥 

>> 
𝑑𝑦1

𝑑𝑥
= 𝑒𝑥 

 

𝑦2 = 𝑒3𝑥 

>>
𝑑𝑦2

𝑑𝑥
= 3𝑒3𝑥 

 

𝑊(𝑦1, 𝑦2) = |
𝑦1 𝑦2

𝑑𝑦1

𝑑𝑥

𝑑𝑦2

𝑑𝑥

| = |𝑒
𝑥 𝑒3𝑥

𝑒𝑥 3𝑒3𝑥| = 𝑒𝑥(3𝑒3𝑥) − 𝑒𝑥(𝑒3𝑥) = 2𝑒4𝑥  

Since 𝑊(𝑦1, 𝑦2) ≠ 0  

∴ Thus,  𝑦1 = 𝑒𝑥 & 𝑦2 = 𝑒3𝑥  are linearly independent.  
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3.3 SOLUTIONS TO HOMOGENEOUS LINEAR ODE WITH CONSTANT COEFFICIENTS  

Over the years, scientist and engineer have found that the non-zero solution to 2nd order homogeneous 

linear ODE with constant coefficients to be an exponential function: 

Solution of  𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0  

to be 𝑦(𝑥) = 𝑒𝑚𝑥 

Technically, the zero solution 𝑦(𝑥) = 0 also satisfies the ODE and is a solution. This is called trivial 

solution. Generally, when solving an ODE, our intention is only to look for the non-trivial solution(s). 

Meanwhile, the intuition of 𝑦(𝑥) = 𝑒𝑚𝑥 being a solution to the aforementioned ODE is not hard to see: 

Since the summation of the derivative terms (LHS) equals to 0 (RHS), the derivatives of 𝑦(𝑥) likely have 

the same function form as 𝑦(𝑥). So, 𝑦(𝑥) being an exponential function is a logical possibility. 

However, this is not a complete solution because 2nd order ODE problem should have 2 linearly 

independent solutions. To find the complete solution, we therefore follow the strategy utilizing the 

characteristic / auxiliary equation. 

 

To solve  𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0 , 

(i) First, form the characteristic equation, 𝑎𝑚2 + 𝑏𝑚 + 𝑐 = 0  

(ii) Solve the characteristic eqn. and find its roots, 𝑚1 & 𝑚2   

-This can be easily obtained by quadratic formula, 𝑚1 & 𝑚2 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
. 

(iii) Check if these two roots are:  

(a) Real & distinct root, 𝑚1  ≠  𝑚2 

(b) A pair of complex conjugates roots, 𝑚1 = 𝑚 + 𝑖𝛽  & 𝑚2 = 𝑚 − 𝑖𝛽 

(c) Repeated real root, 𝑚 = 𝑚1 =  𝑚2 

(iv) Check the table below for the complete solution. 

Recall: Complex conjugate has same magnitude but opposite sign for the imaginary part. For example, 

the complex conjugate for a complex number 𝑚1 = (5 + 6𝑖) is  𝑚2 = (5 − 6𝑖).  

Prove: To obtain the characteristic equation: 𝑎𝑚2 + 𝑏𝑚 + 𝑐 = 0 

𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0  

Assume solution: 𝑦(𝑥) = 𝑒𝑚𝑥 to be solution of the 2nd order ODE 

>> Its derivative:  𝑦′ = 𝑚𝑒𝑚𝑥;  𝑦′′ = 𝑚2𝑒𝑚𝑥 

 

Substitute it into equation 𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0 , we obtain  

>> 𝑎(𝑚2𝑒𝑚𝑥) + 𝑏(𝑚𝑒𝑚𝑥) + 𝑐(𝑒𝑚𝑥) = 0 

>> 𝑒𝑚𝑥(𝑎𝑚2 + 𝑏𝑚 + 𝑐) = 0 
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>> Since 𝑒𝑚𝑥 ≠ 0, we obtain 𝑎𝑚2 + 𝑏𝑚 + 𝑐 = 0, i.e. the characteristic equation. 

 

 

The summary of the complete solution are listed below. The detail description will be provided next. 

Type of 
Roots 

(a) Real and distinct roots 
𝑚1 & 𝑚2 

(b) A pair of complex 
conjugates roots 

𝑚1 = 𝑚 + 𝑖𝛽  & 𝑚2 = 𝑚 − 𝑖𝛽 

(c) Repeated real root 
𝑚 = 𝑚1 =  𝑚2 

Indicator 𝑏2 − 4𝑎𝑐 > 0 𝑏2 − 4𝑎𝑐 < 0 𝑏2 − 4𝑎𝑐 = 0 
Complete 
solution 

𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥   
 

𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥   
 
 
Or 
 

𝑦(𝑥) = 
𝑒𝑚𝑥 (𝐴𝑐𝑜𝑠𝛽𝑥 + 𝐵𝑠𝑖𝑛𝛽𝑥) 

 
where 𝐴 & 𝐵  are arbitrary 
constants     
 
Note: Both representations 
are acceptable, the 
conversion   can be found in 
Appendix 3.1. 
                                                                

𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑥𝑒𝑚2𝑥   
 

Comment -Complementary solution in  𝑒𝑚𝑥 form 
-No treatment is needed 

-Complementary solution 
in 𝑒𝑚𝑥 & 𝑥𝑒𝑚𝑥 form 
-Treatment is needed to 
avoid linearly dependent 
solution. 

Hint: Euler formula: 𝑒±𝑖𝑥 = 𝑐𝑜𝑠𝑥 ± 𝑖(𝑠𝑖𝑛𝑥); 𝑖 = √−1 = 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦. 

 

Case (a): Real and distinct roots 

𝑚1  ≠  𝑚2 

Characteristic equation:  

𝑎𝑚2 + 𝑏𝑚 + 𝑐 = 0  

 

Indicator:  

>>  𝑏2 − 4𝑎𝑐 > 0  

Comment: If 𝑏2 − 4𝑎𝑐 is greater than 0, it indicates that the roots, 𝑚1 & 𝑚2 are real and distinct. 
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Complete solution:  

>> 𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥  

where  𝑚1  ≠  𝑚2   

 

 

Example 3.2: The case for real and distinct roots 

𝑑2𝑦

𝑑𝑥2 + 2
𝑑𝑦

𝑑𝑥
− 3𝑦 = 0  

 

Let 𝑦(𝑥) = 𝑒𝑚𝑥, we obtain Characteristic equation: 𝑚2 + 2𝑚 − 3 = 0 

Indicator: 𝑏2 − 4𝑎𝑐 = 22 − 4(1)(−3) = 16 

Since 𝑏2 − 4𝑎𝑐 > 0, it is the case of real and distinct roots. 

 

Solution of Characteristic equation: (𝑚 − 1)(𝑚 + 3) = 0 

>> 𝑚1 = 1, 𝑚3 = −3 

Complete solution:  

∴ 𝑦(𝑥) = 𝑐1𝑒𝑥 + 𝑐2𝑒−3𝑥 

 

Case (b): A pair of complex conjugates roots 

𝑚1 = 𝑚 + 𝑖𝛽  & 𝑚2 = 𝑚 − 𝑖𝛽 

Characteristic equation:  

𝑎𝑚2 + 𝑏𝑚 + 𝑐 = 0  

 

Indicator:  

>>  𝑏2 − 4𝑎𝑐 < 0  

Comment: If 𝑏2 − 4𝑎𝑐 is less than 0, it indicates that the roots, 𝑚1 & 𝑚2 are a pair of complex conjugates. 

 

Complete solution:  

>> 𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥   

where  𝑚1  ≠  𝑚2    ; 
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               𝑚1 = 𝑚 + 𝑖𝛽  & 𝑚2 = 𝑚 − 𝑖𝛽; 

               𝑖 = √−1 = 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 

 

or  

>> 𝑦(𝑥) = 𝑒𝑚𝑥(𝐴𝑐𝑜𝑠𝛽𝑥 + 𝐵𝑠𝑖𝑛𝛽𝑥)  

 

where 𝑐1, 𝑐2, 𝐴 & 𝐵 are arbitrary constants 

 

Note: In this case, the complete solution can be either 𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥  or 𝑦(𝑥) =
𝑒𝑚𝑥(𝐴𝑐𝑜𝑠𝛽𝑥 + 𝐵𝑠𝑖𝑛𝛽𝑥). Both answers are acceptable. Check Appendix 3.1 for the conversion. 

 

 

Example 3.3: The case of a pair of complex conjugates roots: 

4
𝑑2𝑦

𝑑𝑥2 + 16
𝑑𝑦

𝑑𝑥
+ 17𝑦 = 0  

 

Let 𝑦(𝑥) = 𝑒𝑚𝑥, we obtain Characteristic equation: 4𝑚2 + 16𝑚 + 17 = 0 

Indicator: 𝑏2 − 4𝑎𝑐 = 162 − 4(4)(17) = −16 

Since 𝑏2 − 4𝑎𝑐 < 0, it is the case of pair of complex conjugates roots 

 

Solution of Characteristic equation: 

Completing the square we get 

 𝑚2 + 4𝑚 + 17 4⁄ = 0 

>> (𝑚 + 2)2 − 4 + 17 4⁄ = 0 

>> (𝑚 + 2)2 = − 1 4⁄  

>> 𝑚1 = −2 +
1

2
𝑖,  𝑚2 = −2 −

1

2
𝑖 

Complete solution:  

∴ 𝑦(𝑥) = 𝑐1𝑒(−2+
1

2
𝑖)𝑥 + 𝑐2𝑒(−2−

1

2
𝑖)𝑥, or alternatively: 𝑦(𝑥) = 𝑒−2𝑥  (𝐴𝑐𝑜𝑠

1

2
𝑥 + 𝐵𝑠𝑖𝑛

1

2
𝑥)  
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Case (c): Repeated real root 

𝑚 = 𝑚1 =  𝑚2 

Characteristic equation:  

𝑎𝑚2 + 𝑏𝑚 + 𝑐 = 0  

 

Indicator:  

>>  𝑏2 − 4𝑎𝑐 = 0  

Comment: If 𝑏2 − 4𝑎𝑐 is equal to 0, it indicates that the roots, 𝑚1 & 𝑚2 are repeated real root. 

 

Complete solution:  

Previous solution is not valid here 

>> 𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥   

where  𝑚1 =  𝑚2    and  

               thus 𝑐1𝑒𝑚1𝑥& 𝑐2𝑒𝑚2𝑥 are linearly dependent solution (undesired situation) in this case. 

 

Treatment is needed as follows: 

>> 𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑥𝑒𝑚2𝑥   

where 𝑥 is multiplied to one component solution so that 𝑐1𝑒𝑚1𝑥 & 𝑐2𝑥𝑒𝑚2𝑥 are linearly independent 
solution (desired situation). 

 

Example 3.4: The case of a pair repeated roots 

𝑑2𝑦

𝑑𝑥2 − 4
𝑑𝑦

𝑑𝑥
+ 4𝑦 = 0  

 

Let 𝑦(𝑥) = 𝑒𝑚𝑥, we obtain Characteristic equation: 𝑚2 − 4𝑚 + 4 = 0 

Indicator: 𝑏2 − 4𝑎𝑐 = (−4)2 − 4(1)(4) = 0 

Since 𝑏2 − 4𝑎𝑐 < 0, it is the case of repeated real root. 

 

Solution of Characteristic equation: 

𝑚2 − 4𝑚 + 4 = 0 

>> (𝑚 − 2)(𝑚 − 2) = 0 
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>> 𝑚1 = 2,  𝑚2 = 2 

Complete solution:  

∴ 𝑦(𝑥) = 𝑐1𝑒2𝑥 + 𝑐2𝑥𝑒2𝑥 

 

Overall comment:  

1. Suppose that the roots of the characteristic equation are 𝑚1 & 𝑚2, then 𝑒𝑚1𝑥 & 𝑒𝑚2𝑥 are the 

solution of the differential equation. 

2. Since 𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0   is a linear homogeneous equation, by using the linear 

independency and linearity principle, the general solution must be 

(i) 𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥 for real and distinct root, 𝑚1  ≠  𝑚2.  

(ii) 𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥  or 𝑦(𝑥) = 𝑒𝑚𝑥(𝐴𝑐𝑜𝑠𝛽𝑥 + 𝐵𝑠𝑖𝑛𝛽𝑥) for a pair of complex 

conjugate roots, 𝑚1 = 𝑚 + 𝑖𝛽  & 𝑚2 = 𝑚 − 𝑖𝛽.  

(iii) However, if there is repeated real roots, 𝑚 = 𝑚1 =  𝑚2, we get linearly dependent 

solution 𝑦(𝑥) = 𝑐1𝑒𝑚𝑥 + 𝑐2𝑒𝑚𝑥 as proven earlier. In this case, 𝑦(𝑥) = 𝑥𝑒𝑚𝑥 is proven 

as one of the solution of 2nd order ODE and it is linearly independent with 𝑒𝑚𝑥. Thus a 

complete solution with treatment𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑥𝑒𝑚2𝑥 is obtained which satisfy 

the linearly independency property. 

 

Extra Info: Check Appendix 3.2 to find the strategy to solve the Homogeneous linear differential equation 

with non-constant coefficients 𝑥2, 𝑎𝑥 (Known as Euler-Cauchy Differential Equation).  

𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑎𝑥
𝑑𝑦

𝑑𝑥
+ 𝑏𝑦 = 0                                   [Strategy: Let solution to be 𝑥 = 𝑒𝑡 & convert to (i)] 

 


