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SOLUTIONS TO NON-HOMOGENEOUS 

LINEAR 2ND ORDER ODE 
WEEK 4: SOLUTIONS TO NON-HOMOGENEOUS LINEAR 2 N D  ORDER ODE 

4.1 SOLUTIONS TO NON-HOMOGENEOUS LINEAR ODE WITH CONSTANT 

COEFFICIENTS 

So far, we have discussed the strategy to solve homogeneous problem, now we will continue with the 

non-homogeneous problem, i.e. 𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 𝑟(𝑥), where 𝑟(𝑥) ≠ 0. As before, this refers to 2nd 

order ODE with constant coefficients. 

 

When we solve a homogeneous linear 2nd order ODE, 𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0, the solution is named as 

the complementary solution, 𝑦 = 𝑦𝑐. Naturally, we might think that solving the non-homogeneous 

𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 𝑟(𝑥) will give just a different solution 𝑦 = 𝑦𝑝 (which is known as the particular 

solution). However, actual responses from systems modeled as non-homogeneous ODE often clearly 

display a combination of two parts: a transient part and a steady-state part. It turns out that the 

solution to 𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 𝑟(𝑥) is made up of the complementary solution and the particular 

solution, which means 𝑦 = 𝑦𝑐 + 𝑦𝑝. 

 

This can be understood clearer by seeing the equation as: 

𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0 + 𝑟(𝑥)  

so the component 𝑦𝑐, when substituted back the equation, satisfies the RHS of 0, while the component 

𝑦𝑝, when substituted back to the equation, satisfies the RHS of 𝑟(𝑥): 

Using the notation 𝑦′′ =
𝑑2𝑦

𝑑𝑥2            𝑦′ =
𝑑𝑦

𝑑𝑥
            𝑦 = 𝑦𝑐 + 𝑦𝑝 

𝐿𝐻𝑆 = 𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦  

= 𝑎(𝑦𝑐
′′ + 𝑦𝑝

′′) + 𝑏(𝑦𝑐
′ + 𝑦𝑝

′) + 𝑐(𝑦𝑐 + 𝑦𝑝)  

= (𝑎𝑦𝑐
′′ + 𝑏𝑦𝑐

′ + 𝑐𝑦𝑐) + (𝑎𝑦𝑝
′′ + 𝑏𝑦𝑝

′ + 𝑐𝑦𝑝)  

= (                 0               ) + (                𝑟(𝑥)            ) = 𝑟(𝑥) = 𝑅𝐻𝑆  

So 𝑦 = 𝑦𝑐 + 𝑦𝑝 is indeed the solution for 𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 𝑟(𝑥). 
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4.2 METHOD OF UNDETERMINED COEFFICIENT S 

As an overview, solving 𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 𝑟(𝑥) involves (1) finding 𝑦𝑐  and (2) finding 𝑦𝑝: 

(1) Solve 𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0 just as in homogeneous ODE topic  obtain 𝑦𝑐  

(2) 𝑦𝑝  Obtained by the method of undetermined coefficients 

 

A general way of understanding the method of undetermined coefficients is that the particular 

solution 𝑦𝑝 follows the same form as 𝑟(𝑥). In scenarios represented by ODE, 𝑟(𝑥) is the input to the 

system, while the solution 𝑦 is the output or response. So, in general, the output follows the same form 

as the input (e.g. a sinusoidal force acting on a spring-loaded mass makes the mass to oscillate 

sinusoidally). 

 

If the RHS components, 𝑟(𝑥) are in the simple form of exponential, polynomial, sine and cosine 

functions, we can implement the method of undetermined coefficient by letting the RHS components 

to be equal to 𝑒𝛼𝑥𝑃𝑛(𝑥) as following: 

𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 𝑒𝛼𝑥𝑃𝑛(𝑥)  

where 𝑃𝑛(𝑥) is a polynomial function of degree n 

 

Hence, we can propose the possible particular solution of 𝑦𝑝 = 𝑒𝛼𝑥𝑄𝑛(𝑥). With this proposed 𝑦𝑝, the 

remaining task is to substitute 𝑦𝑝 and its derivatives back to the ODE and compare between LHS and 

RHS to determine all the unknown coefficient values. Finally, 𝑦 = 𝑦𝑐 + 𝑦𝑝. 

 

The general procedure to solve the 2nd order nonhomogeneous linear ODE using the method of 

undetermined coefficients is summarized: 
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General procedure for the method of undetermined coefficient: 

2nd order non-homogeneous linear ODE: 

𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 𝑟(𝑥)  

 

Step 1: Solve the homogenous part first 

𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0  

Depending on the characteristic roots, complementary solution: 

𝑦𝑐(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥         or        𝑦𝑐(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑥𝑒𝑚2𝑥  

 

Step 2: Solve the non-homogeneous part next 

𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 𝑒𝛼𝑥𝑃𝑛(𝑥)  

Possible particular solution: 

 𝑦𝑝 = 𝑒𝛼𝑥𝑄𝑛(𝑥) 

where 𝑄𝑛(𝑥) = 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑤𝑖𝑡ℎ 𝑠𝑎𝑚𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑛 𝑤𝑖𝑡ℎ 𝑃𝑛(𝑥) ,  

e.g. 𝑃2(𝑥) = 5𝑥2 𝑤ℎ𝑒𝑟𝑒 𝑛 = 2, 𝑡ℎ𝑒𝑛 𝑄2 = 𝐴𝑥2 + 𝐵𝑥 + 𝐶 

 

Step 3: If 𝑦𝑝 & 𝑦𝑐  are linearly dependent, 

 give treatment / cure to 𝑦𝑝 to obtain linearly independent solution. 

Proposed particular solution after cure: 

 𝑦𝑝 = 𝑥𝑒𝛼𝑥𝑄𝑛(𝑥)      or      𝑦𝑝 = 𝑥2𝑒𝛼𝑥𝑄𝑛(𝑥) 

 

Step 4: Solve the undetermined coefficient of the particular solution  

by comparing the coefficient on both sides of the equation. 

 

Step 5: The total solution for the 2nd order non-homogeneous linear ODE: 

𝑦𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑐 + 𝑦𝑝 

Note 1: Always solve the complementary solution first before proposing the particular solution. 

Note 2: The detail description for the ’Step 1: Solve the homogenous part first’ can be found in the 

previous section. Now, we will discuss on the ’Step 2: Solve the non-homogeneous part next’. 
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The method of undetermined coefficient is only applicable to 2nd order non-homogeneous linear ODE, 

where the RHS component, 𝑟(𝑥) is restricted for exponential, polynomial, sine and cosine functions, i.e. 

𝑒𝛼𝑥𝑃𝑛(𝑥).  

 

The exponential function is related directly to the 𝑒𝛼𝑥 and polynomial function is related directly to the 

𝑃𝑛(𝑥). Moreover, the exponential function, 𝑒𝛼𝑥 is related indirectly to sine & cosine functions through 

Euler’s Formula: 𝑒±𝑖𝑥 = 𝑐𝑜𝑠𝑥 ± 𝑖(𝑠𝑖𝑛𝑥).  

 

Example 4.1: 

 𝑒−𝑖(10𝑥) = cos(10𝑥) − 𝑖𝑠𝑖𝑛(10𝑥).  

Thus, imaginary part of 𝑒−𝑖(10𝑥), i.e.  𝐼𝑚[𝑒−𝑖(10𝑥)] = −sin (10𝑥) 

Real part of 𝑒−𝑖(10𝑥), i.e.  𝑅𝑒(𝑒−𝑖(10𝑥)) = cos (10𝑥) 

 

Exercise: What is the imaginary part and real part of 𝑒𝑖(5𝑥) ? 
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Depends on the RHS function, the possible particular solution is proposed for the 2nd order non-

homogeneous linear ODE as shown in table below. 

RHS function The form of  
𝑟(𝑥) = 𝑒𝛼𝑥𝑃𝑛(𝑥) 

Possible Particular 
Solution  

𝑦𝑝 = 𝑒𝛼𝑥𝑄𝑛(𝑥) 

Comment 

(i) Pure Exponential 
Function, 
 e.g. 
𝑟(𝑥) = 𝑒−3𝑥 
 

𝑟(𝑥) = 𝑒−3𝑥𝑃0(𝑥) 
 
where 

𝛼 = −3 
& 

𝑃𝑛(𝑥) = 1 with  
degree 𝑛 = 0 

𝑦𝑝 = 𝑒−3𝑥𝑄𝑂 

   = 𝐴𝑒−3𝑥 
 
where  
𝑄𝑂 =  general 
polynomial with degree 
𝑛 = 0 
 

Sine, Cosine, 
Exponential functions 
are related to each 
other in Euler formula: 

𝑒±𝑖𝑥 = 𝑐𝑜𝑠𝑥 ±
𝑖(𝑠𝑖𝑛𝑥) , thus they can 
be represented by the 
exponential function or 
trigonometric function. 
 
 
The possible 
particular solution for 
the RHS sine and 
cosine functions by let 
𝑦𝑝 = 𝐶𝑐𝑜𝑠𝑥 + 𝐷𝑠𝑖𝑛𝑥 . 

Both option 1 & 2 are 
acceptable in this 
study. 
 

(ii) Pure Sine 
Function, e.g. 
𝑟(𝑥) = 𝑠𝑖𝑛5𝑥 

 
Given 

𝑒𝑖(5𝑥)

= 𝑐𝑜𝑠5𝑥 + 𝑖(𝑠𝑖𝑛5𝑥) 

𝐼𝑚(𝑒𝑖(5𝑥)) = 𝑠𝑖𝑛5𝑥 

𝑟(𝑥) = 𝐼𝑚(𝑒(5𝑖)𝑥)𝑃0(𝑥) 
 
where 

𝛼 = 5𝑖 
& 

𝑃𝑛(𝑥) = 1 with  

degree 𝑛 = 0 

 

Option 1: 

𝑦𝑝 = 𝑒(5𝑖)𝑥𝑄𝑂 

 = 𝐴𝑒5𝑖𝑥 

 

𝑦𝑝,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐼𝑚(𝑦𝑝) 

 
Option 2: 
𝑦𝑝 = 𝐶𝑐𝑜𝑠5𝑥 + 𝐷𝑠𝑖𝑛5𝑥 

(iii) Pure Cosine 
Function,  
e.g. 

𝑟(𝑥) = 𝑐𝑜𝑠6𝑥 

 
Given 

𝑒𝑖(6𝑥)

= 𝑐𝑜𝑠6𝑥 + 𝑖(𝑠𝑖𝑛6𝑥) 

𝑅𝑒(𝑒𝑖(6𝑥)) = 𝑐𝑜𝑠6𝑥 

𝑟(𝑥) = 𝑅𝑒(𝑒(6𝑖)𝑥)𝑃0(𝑥) 
 
where 

𝛼 = 6𝑖 
& 

𝑃𝑛(𝑥) = 1 with  

degree 𝑛 = 0 

 

Option 1: 

𝑦𝑝 = 𝑒(6𝑖)𝑥𝑄𝑂 

 = 𝐴𝑒6𝑖𝑥 

 

𝑦𝑝,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑅𝑒(𝑦𝑝) 

 
Option 2: 
𝑦𝑝 = 𝐶𝑐𝑜𝑠6𝑥 + 𝐷𝑠𝑖𝑛6𝑥 

 

(iv) Mixture of 
Exponential & 
Cosine Function, 
e.g. 

      𝑟(𝑥) = 𝑒−3𝑥𝑐𝑜𝑠6𝑥 
 
 

Given 

𝑒𝑖(6𝑥)

= 𝑐𝑜𝑠6𝑥 + 𝑖(𝑠𝑖𝑛6𝑥) 

𝑅𝑒(𝑒𝑖(6𝑥)) = 𝑐𝑜𝑠6𝑥 

𝑟(𝑥) 

= 𝑅𝑒(𝑒(6𝑖)𝑥)(𝑒(−3𝑥))𝑃0(𝑥) 

= 𝑅𝑒(𝑒(6𝑖−3)𝑥)𝑃0(𝑥) 
 
where 

𝛼 = 6𝑖 − 3 
& 

𝑃𝑛(𝑥) = 1 with  

degree 𝑛 = 0 

 

Option 1: 

𝑦𝑝 = 𝑒(6𝑖−3)𝑥𝑄𝑂 

 = 𝐴𝑒(6𝑖−3)𝑥 

 

𝑦𝑝,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑅𝑒(𝑦𝑝) 

 
Option 2: 

𝑦𝑝

= 𝑒−3𝑥(𝐶𝑐𝑜𝑠6𝑥
+ 𝐷𝑠𝑖𝑛6𝑥) 
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RHS function The form of  
𝑟(𝑥) = 𝑒𝛼𝑥𝑃𝑛(𝑥) 

Possible Particular 
Solution  

𝑦𝑝 = 𝑒𝛼𝑥𝑄𝑛(𝑥) 

Comment 

(i) Pure Polynomial 
Function, 
 e.g. 
 

𝑟(𝑥) = 6𝑥3 + 4𝑥2 + 5 
 

𝑟(𝑥) = 𝑒(0𝑥)𝑃3(𝑥) 

 

Where 

𝛼 = 0 

& 

𝑃3(𝑥) = 6𝑥3 + 4𝑥2 + 5 is 
the polynomial function of 

degree 𝑛 = 3 

 

𝑦𝑝 = 𝑒(0)𝑥𝑄3 

      = 𝐴𝑥3 + 𝐵𝑥2 
          +𝐶𝑥 + 𝐷 

 

 

Nil 

(ii) Mixture of 
Polynomial & 
Exponential 
Function in 
multiplication,  
e.g. 

 
𝑟(𝑥) = 6𝑥𝑒−3𝑥 

𝑟(𝑥) = 𝑒−3𝑥𝑃1(𝑥) 

 

where 

𝛼 = −3 

& 

𝑃1(𝑥) = 6𝑥 

 

𝑦𝑝 = 𝑒(−3)𝑥𝑄1 

      = 𝑒(−3)𝑥(𝐴𝑥 + 𝐵) 
 

 

Nil 

(iii) Mixture of 
Polynomial & 
Exponential 
Function in ‘+’ , 
e.g. 

 

𝑟(𝑥) = 𝑒−3𝑥 
+6𝑥3 + 4𝑥2 + 5 
 

For polynomial function, 

𝑟(𝑥) = 𝑒(0𝑥)𝑃3(𝑥) 

where 𝛼 = 0 & 𝑃3(𝑥) =
6𝑥3 + 4𝑥2 + 5  is the 
polynomial function of 
degree 𝑛 = 3 

For exponential function, 
𝑟(𝑥) = 𝑒−3𝑥𝑃0(𝑥) 

where 𝛼 = −3 & 𝑃𝑛(𝑥) =
1 with degree 𝑛 = 0 

For polynomial 
function, 

𝑦𝑝,1 = 𝑒(0)𝑥𝑄3 

      = 𝐴𝑥3 + 𝐵𝑥2 
          +𝐶𝑥 + 𝐷 

For exponential 
function, 
𝑦𝑝,2 = 𝑒−3𝑥𝑄𝑂 

         = 𝐸𝑒−3𝑥 

For mixture of them, 

𝑦𝑝 = 𝑦𝑝,1 + 𝑦𝑝,2 

 

Alternative:  

Can be solved 
separately 

(i.e. obtain 𝑦𝑝,1 & 𝑦𝑝,2) 

and then 
combine the result  

(i.e.𝑦𝑝 = 𝑦𝑝,1 + 𝑦𝑝,2)  

 
This is known as linear 
superposition (the 
linearity principle) 

Note:  𝑒±𝑖𝑥 = 𝑐𝑜𝑠𝑥 ± 𝑖(𝑠𝑖𝑛𝑥); 𝑄𝑛(𝑥) & 𝑃𝑛(𝑥) are two polynomial functions with same degree. 
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Note 3: Now, we will discuss the ’Step 3: To check the linear dependency and give treatment to particular 

solution if needed’. 

The possible particular solution is proposed according to the RHS function, however, further treatment 

will be needed to obtain a linearly independent solution by comparing with the complementary solution. 

In fact, the proposed particular solution 𝑦𝑝 can be separated into 3 cases depending on  

(i) The possible particular solution, 𝑦𝑝 = 𝑒𝛼𝑥𝑄𝑛(𝑥) and 

(ii) The complementary solution that in the function of roots 𝑚1 & 𝑚2, i.e.   

𝑦𝑐 = {

𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥 , 𝑤ℎ𝑒𝑟𝑒 𝑚1 ≠ 𝑚2  [𝑪𝒂𝒔𝒆 𝟏]

𝑐1𝑒(𝑚+𝑖β)𝑥 + 𝑐2𝑒(𝑚−𝑖β)𝑥 , 𝑤ℎ𝑒𝑟𝑒 𝑚1 ≠ 𝑚2  [𝑪𝒂𝒔𝒆 𝟐]

𝑐1𝑥𝑒𝑚𝑥 + 𝑐2𝑒𝑚𝑥 , 𝑤ℎ𝑒𝑟𝑒 𝑚1 = 𝑚2  [𝑪𝒂𝒔𝒆 𝟑]

} 

The proposed particular solution is illustrated below. 

 Case 1 
(𝛼 ≠ 𝑚1 & 𝑚2) 

Case 2 
(𝛼 = 𝑚1 𝑜𝑟 𝑚2, 

  𝑚1  ≠  𝑚2) 

Case 3 
(𝛼 = 𝑚1 =  𝑚2) 

Definition Coefficient 𝛼 is not equal to 
coefficients 𝑚1 & 𝑚2 

Coefficient 𝛼 is equal to one 
of the coefficient 𝑒. 𝑔. 𝑚1 

and different with another 
coefficient 𝑚2 

Coefficient 𝛼 is equal 
to both coefficients 

𝑚1 & 𝑚2 

Possible 
complementary 

solution 
for homogeneous 

ODE 

𝑦𝑐

= {

𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥 

𝑐1𝑒(𝑚+𝑖β)𝑥 + 𝑐2𝑒(𝑚−𝑖β)𝑥

𝑐1𝑥𝑒𝑚𝑥 + 𝑐2𝑒𝑚𝑥

} 

 

𝑦𝑐

= {
𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥

𝑐1𝑒(𝑚+𝑖β)𝑥 + 𝑐2𝑒(𝑚−𝑖β)𝑥} 

 

𝑦𝑐  
= 𝑐1𝑥𝑒𝑚𝑥 + 𝑐2𝑒𝑚𝑥 

 

Proposed 
particular  
solution 
for non-

homogeneous 
ODE 

𝑦𝑝 = 𝑒𝛼𝑥𝑄𝑛(𝑥) 𝑦𝑝 = 𝑥𝑒𝛼𝑥𝑄𝑛(𝑥) 

 

𝑦𝑝 = 𝑥2𝑒𝛼𝑥𝑄𝑛(𝑥) 

 

Observation If 𝛼 ≠ 𝑚1 & 𝑚2,   
No treatment is needed for 

𝑦𝑝 = 𝑒𝛼𝑥𝑄𝑛(𝑥)  

because  
𝑦𝑝 has various forms as 𝑦𝑐  

(i.e.  𝑦𝑝 & 𝑦𝑐 are linearly 

independent) 

If 𝛼 = 𝑚1 𝑜𝑟 𝑚2, 
  𝑚1  ≠  𝑚2,  

we can’t use 𝑦𝑝 = 𝑒𝛼𝑥𝑄𝑛(𝑥)  

because  
this form has the similar 

form as 𝑦𝑐  and cause zero 
RHS function. (Linearly 

dependent) 
Treatment is needed. 

If 𝛼 = 𝑚1 =  𝑚2, we 
can’t use 

 𝑦𝑝 = 𝑒𝛼𝑥𝑄𝑛(𝑥)     

or 𝑦𝑝 = 𝑥𝑒𝛼𝑥𝑄𝑛(𝑥)  

because these forms 
have the similar form 
as 𝑦𝑐  and cause zero 

RHS function. 
(Linearly dependent) 

Treatment is needed. 

Hint: Multiply the independent variable, 𝑥 or 𝑥2 to the particular solution if you found the complementary 

solution has the similar exponential function as the proposed particular solution. This is known as the 

cure / treatment to the particular solution. 
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Note 4:  Step 4 & 5 are quite straight forward, the general solution of non-homogeneous ODE consists 

of complementary solution and particular solution (i.e. 𝑦𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑐 + 𝑦𝑝). 

Example 4.2: Solve 
𝑑2𝑦

𝑑𝑥2 − 3
𝑑𝑦

𝑑𝑥
+ 2𝑦 = 𝑒𝑥   [RHS - Pure Exponential Function] 

Step 1: Homogeneous Part 

i.e.  
𝑑2𝑦

𝑑𝑥2 − 3
𝑑𝑦

𝑑𝑥
+ 2𝑦 = 0 

Step 2: Nonhomogeneous Part 

i.e.  
𝑑2𝑦

𝑑𝑥2 − 3
𝑑𝑦

𝑑𝑥
+ 2𝑦 = 𝑒𝑥 

 

Characteristic equation: 

𝑚2 − 3𝑚 + 2 = 0 

(𝑚 − 2)(𝑚 − 1) = 0 

𝑚1 = 2 & 𝑚2 = 1 

 

Comment: Real & distinct roots 

 

Complementary solution: 

𝑦𝑐 = 𝑐1𝑒2𝑥 + 𝑐2𝑒𝑥 

 

The method of undetermined coefficient: 

RHS: 𝑟(𝑥) = 𝑒𝛼𝑥𝑃𝑛(𝑥) 

where  𝛼 = 1, 𝑛 = 0 

Possible particular solution:  

𝑦𝑝 = 𝑒𝑥𝑄0(𝑥) = 𝐴𝑒𝑥 

Since 𝛼 ≠ 𝑚1 and  𝛼 = 𝑚2, treatment is necessary: 

𝑦𝑝 = 𝐴𝑥𝑒𝑥 

Comment:  
(i) 𝑦𝑝 = 𝐴𝑒𝑥  &  𝑦𝑐 = 𝑐1𝑒2𝑥 + 𝑐2𝑒𝑥 are linearly dependent. 

(ii) 𝑦𝑝 = 𝐴𝑥𝑒𝑥  &  𝑦𝑐 = 𝑐1𝑒2𝑥 + 𝑐2𝑒𝑥 are linearly independent. 

 

Solve the coefficient for the proposed particular solution: 

𝑦𝑝 = 𝐴𝑥𝑒𝑥 

Differentiate it, we get:         
𝑑𝑦𝑝

𝑑𝑥
= 𝐴𝑥𝑒𝑥 + 𝐴𝑒𝑥 

              
𝑑2𝑦𝑝

𝑑𝑥2 = 𝐴𝑥𝑒𝑥 + 2𝐴𝑒𝑥  

Substitute to the ODE equation: 
𝑑2𝑦

𝑑𝑥2 − 3
𝑑𝑦

𝑑𝑥
+ 2𝑦 = 𝑒𝑥  

>> (𝐴𝑥𝑒𝑥 + 2𝐴𝑒𝑥) − 3(𝐴𝑥𝑒𝑥 + 2𝐴𝑒𝑥) + 2(𝐴𝑥𝑒𝑥) = 𝑒𝑥 

>> −𝐴𝑒𝑥 = 𝑒𝑥 

Comparing the coefficients,  

>> 𝑒𝑥: 𝐴 = −1 

The actual particular solution: 

𝑦𝑝 = −𝑥𝑒𝑥 

The complete/ general solution to 
𝑑2𝑦

𝑑𝑥2 − 3
𝑑𝑦

𝑑𝑥
+ 2𝑦 = 𝑒𝑥  is 

 𝑦𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑐 + 𝑦𝑝 = 𝑐1𝑒2𝑥 + 𝑐2𝑒𝑥 − 𝑥𝑒𝑥 
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Example 4.3: Solve 
𝑑2𝑦

𝑑𝑥2 − 5
𝑑𝑦

𝑑𝑥
+ 6𝑦 = 4𝑠𝑖𝑛2𝑥    [RHS - Pure Sine Function] 

Step 1: Homogeneous Part 

i.e. 
𝑑2𝑦

𝑑𝑥2 − 5
𝑑𝑦

𝑑𝑥
+ 6𝑦 = 0 

Step 2: Nonhomogeneous Part 

i.e. 
𝑑2𝑦

𝑑𝑥2 − 5
𝑑𝑦

𝑑𝑥
+ 6𝑦 = 4𝑠𝑖𝑛2𝑥 

 

Characteristic equation: 

𝑚2 − 5𝑚 + 6 = 0 

(𝑚 − 2)(𝑚 − 3) = 0 

𝑚1 = 2 & 𝑚2 = 3 

 

Comment: Real & distinct roots 

 

Complementary solution: 

𝑦𝑐 = 𝑐1𝑒2𝑥 + 𝑐2𝑒3𝑥 
 
 

The method of undetermined coefficient: 

RHS: 𝑟(𝑥) = 4𝑠𝑖𝑛2𝑥 

From Euler’s formula: 𝑒(2i𝑥) = cos(2𝑥) + 𝑖𝑠𝑖𝑛(2𝑥) 

Thus, 𝐼𝑚[𝑒(2i𝑥)] = 𝑠𝑖𝑛(2𝑥) 

RHS: 𝑟(𝑥) = 𝑒𝛼𝑥𝑃𝑛(𝑥) = 4𝐼𝑚[𝑒(2i𝑥)] 

where  𝛼 = 2𝑖, 𝑛 = 0 

 

Possible particular solution:  

𝑦𝑝 = 𝑒2𝑖𝑥𝑄0(𝑥) = 𝐴𝑒2𝑖𝑥 

Since 𝛼 ≠ 𝑚1 and  𝑚2, treatment is not needed. 

𝑦𝑝 = 𝐴𝑒2𝑖𝑥 

𝑦𝑝,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐼𝑚(𝑦𝑝) 

Comment:  

(i) 𝑦𝑝 = 𝐴𝑒2𝑖𝑥  &  𝑦𝑐 = 𝑐1𝑒2𝑥 + 𝑐2𝑒3𝑥 are linearly independent. 

(ii) Common practice use the 𝑦𝑝 in the calculation instead of 𝐼𝑚(𝑦𝑝) 

for the ease of calculation. Once the 𝑦𝑝 is solved, then we can 

determine the actual 𝑦𝑝 using 𝑦𝑝,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐼𝑚(𝑦𝑝). 

 

Solve the coefficient for the particular solution: 

𝑦𝑝 = 𝐴𝑒2𝑖𝑥 

Differentiate it, we get:         
𝑑𝑦𝑝

𝑑𝑥
= 2𝑖𝐴𝑒2𝑖𝑥 

              
𝑑2𝑦𝑝

𝑑𝑥2 = −4𝐴𝑒2𝑖𝑥  

 

Substitute to the ODE equation: 
𝑑2𝑦

𝑑𝑥2 − 5
𝑑𝑦

𝑑𝑥
+ 6𝑦 = 4𝑠𝑖𝑛2𝑥  

>> (−4𝐴𝑒2𝑖𝑥) − 5(2𝑖𝐴𝑒2𝑖𝑥) + 6(𝐴𝑒2𝑖𝑥) = 4𝑒(2i𝑥) 

>> 𝑖(−10𝐴𝑒2𝑖𝑥) + 2(𝐴𝑒2𝑖𝑥) = 4𝑒(2i𝑥) 
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Comparing the coefficients,  

>> 𝑒2𝑖𝑥: 2𝐴 − 10𝐴𝑖 = 4 

>> 𝐴 =
4

2−10𝑖
=

2

1−5𝑖
 

 

 

The particular solution: 

𝑦𝑝 =
2

1−5𝑖
𝑒2𝑖𝑥  

>> 𝑦𝑝 =
2

1−5𝑖
(

1+5𝑖

1+5𝑖
) (𝑐𝑜𝑠2𝑥 + 𝑖𝑠𝑖𝑛2𝑥)  

>> 𝑦𝑝 =
2(1+5𝑖)

26
(𝑐𝑜𝑠2𝑥 + 𝑖𝑠𝑖𝑛2𝑥)  

>> 𝑦𝑝 =
(1+5𝑖)

13
(𝑐𝑜𝑠2𝑥 + 𝑖𝑠𝑖𝑛2𝑥) 

>> 𝑦𝑝 =
(𝑐𝑜𝑠2𝑥−5𝑠𝑖𝑛2𝑥)+𝑖(5𝑐𝑜𝑠2𝑥+𝑠𝑖𝑛2𝑥)

13
 

 

The actual particular solution: 

𝑦𝑝,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐼𝑚(𝑦𝑝) 

>> 𝑦𝑝,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐼𝑚 (
(𝑐𝑜𝑠2𝑥−5𝑠𝑖𝑛2𝑥)+𝑖(5𝑐𝑜𝑠2𝑥+𝑠𝑖𝑛2𝑥)

13
) =

(5𝑐𝑜𝑠2𝑥+𝑠𝑖𝑛2𝑥)

13
 

 

The complete/ general solution to 
𝑑2𝑦

𝑑𝑥2 − 5
𝑑𝑦

𝑑𝑥
+ 6𝑦 = 4𝑠𝑖𝑛2𝑥 is  

𝑦𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑐 + 𝑦𝑝 = 𝑐1𝑒2𝑥 + 𝑐2𝑒3𝑥 +
(5𝑐𝑜𝑠2𝑥+𝑠𝑖𝑛2𝑥)

13
  

Note: Similar procedure as the case of RHS - Pure Cosine Function 

 

 

 

 

 

 

 

 

 



11 
 

Example 4.4: Solve 
𝑑2𝑦

𝑑𝑥2 + 4
𝑑𝑦

𝑑𝑥
+ 5𝑦 = 𝑒−2𝑥𝑐𝑜𝑠𝑥 [RHS - Mixture of Exponential & Cosine Function] 

Step 1: Homogeneous Part 

i.e. 
𝑑2𝑦

𝑑𝑥2 + 4
𝑑𝑦

𝑑𝑥
+ 5𝑦 = 0                     

Step 2: Nonhomogeneous Part 
𝑑2𝑦

𝑑𝑥2 + 4
𝑑𝑦

𝑑𝑥
+ 5𝑦 = 𝑒−2𝑥𝑐𝑜𝑠𝑥                    

Characteristic equation: 

𝑚2 + 4𝑚 + 5 = 0 

(𝑚 + 2)2 − 4 + 5 = 0 

𝑚 = −2 ± √−1 

𝑚1 = −2 + i & 𝑚2 = −2 − i 

 

Comment: A pair of complex 
conjugates roots 

 

Complementary solution: 

𝑦𝑐 = 𝑐1𝑒(−2+i)𝑥 + 𝑐2𝑒(−2−i)𝑥 
 
 
Comment: 
(i) For your extra info., the 

complementary solution can 
be converted to 𝑦𝑐 =

𝑒−2𝑥(𝐴𝑐𝑜𝑠𝑥 + 𝐵𝑠𝑖𝑛𝑥) 
 
 

The method of undetermined coefficient: 

RHS: 𝑟(𝑥) = 𝑒−2𝑥𝑐𝑜𝑠𝑥                     

From Euler’s formula: 𝑒(i𝑥) = cos(𝑥) + 𝑖𝑠𝑖𝑛(𝑥) 

Thus, 𝑅𝑒[𝑒(i𝑥)] = 𝑐𝑜𝑠(𝑥) 

RHS: 𝑟(𝑥) = 𝑒𝛼𝑥𝑃𝑛(𝑥) = 𝑒−2𝑥𝑅𝑒[𝑒(i𝑥)] = 𝑅𝑒[𝑒(−2+i)𝑥] 

where  𝛼 = −2 + 𝑖, 𝑛 = 0 

Possible particular solution:  

𝑦𝑝 = 𝑒(−2+𝑖)𝑥𝑄0(𝑥) = 𝐴𝑒(−2+𝑖)𝑥 

Since 𝛼 = 𝑚1 and  𝛼 ≠ 𝑚2, treatment is needed. 

𝑦𝑝 = 𝐴𝑥𝑒(−2+𝑖)𝑥 

𝑦𝑝,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑅𝑒(𝑦𝑝) 

Comment:  

(i) 𝑦𝑝 = 𝐴𝑒(−2+𝑖)𝑥  and 𝑦𝑐 = 𝑐1𝑒(−2+i)𝑥 + 𝑐2𝑒(−2−i)𝑥  are linearly 

dependent 

(ii) 𝑦𝑝 = 𝐴𝑥𝑒(−2+𝑖)𝑥  and 𝑦𝑐 = 𝑐1𝑒(−2+i)𝑥 + 𝑐2𝑒(−2−i)𝑥  are linearly 

independent 
(iii) Common practice use the 𝑦𝑝  in the calculation instead of 

𝑅𝑒(𝑦𝑝) for the ease of calculation. Once the 𝑦𝑝 is solved, then 

we can solve the actual 𝑦𝑝 using 𝑦𝑝,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑅𝑒(𝑦𝑝). 

 

Solve the coefficient for the particular solution: 

𝑦𝑝 = 𝐴𝑥𝑒(−2+𝑖)𝑥 

Differentiate: 
𝑑𝑦𝑝

𝑑𝑥
= (−2 + 𝑖)𝐴𝑥𝑒(−2+𝑖)𝑥 + 𝐴𝑒(−2+𝑖)𝑥 

                     
𝑑2𝑦𝑝

𝑑𝑥2 = (3 − 4𝑖)𝐴𝑥𝑒(−2+𝑖)𝑥 + (−4 + 2𝑖)𝐴𝑒(−2+𝑖)𝑥  

 

Substitute to the ODE equation: 
𝑑2𝑦

𝑑𝑥2 + 4
𝑑𝑦

𝑑𝑥
+ 5𝑦 = 𝑒−2𝑥𝑐𝑜𝑠𝑥                      

>> ((3 − 4𝑖)𝐴𝑥𝑒(−2+𝑖)𝑥 + (−4 + 2𝑖)𝐴𝑒(−2+𝑖)𝑥 ) + 4 ((−2 +

𝑖)𝐴𝑥𝑒(−2+𝑖)𝑥 + 𝐴𝑒(−2+𝑖)𝑥) + 5(𝐴𝑥𝑒(−2+𝑖)𝑥) = 𝑒(−2+i)𝑥 

>> 2𝑖𝐴𝑒(−2+𝑖)𝑥 = 𝑒(−2+i)𝑥  
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Comparing the coefficients,  

>> 𝑒(−2+𝑖)𝑥: 2𝑖𝐴 = 1 

>> 𝐴 =
1

2𝑖
 

 

The particular solution: 

𝑦𝑝 = 𝐴𝑥𝑒(−2+𝑖)𝑥 =
1

2𝑖
𝑥𝑒(−2+𝑖)𝑥  

>> 𝑦𝑝 =
1

2𝑖

𝑖

𝑖
𝑥𝑒(−2)𝑥𝑒(𝑖)𝑥  

>> 𝑦𝑝 = −
𝑖

2
𝑥𝑒−2𝑥(𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥)  

>> 𝑦𝑝 = −
1

2
𝑥𝑒−2𝑥(𝑖𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥)  

The actual particular solution: 

𝑦𝑝,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑅𝑒(𝑦𝑝) 

>> 𝑦𝑝,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑅𝑒 (−
1

2
𝑥𝑒−2𝑥(𝑖𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥)) =

1

2
𝑥𝑒−2𝑥(𝑠𝑖𝑛𝑥) 

 

The complete / general solution to 
𝑑2𝑦

𝑑𝑥2 + 4
𝑑𝑦

𝑑𝑥
+ 5𝑦 = 𝑒−2𝑥𝑐𝑜𝑠𝑥 is  

𝑦𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑐 + 𝑦𝑝 = 𝑐1𝑒(−2+𝑖)𝑥 + 𝑐2𝑒(−2−𝑖)𝑥 +
1

2
𝑥𝑒−2𝑥(𝑠𝑖𝑛𝑥)  

There is an alternative to solve 2nd order non-homogeneous linear ODE problem with RHS sine and 

cosine functions by using 𝑦𝑝 = 𝐶𝑐𝑜𝑠𝑥 + 𝐷𝑠𝑖𝑛𝑥. Students are allowed to use either way to solve. 

Alternative method to solve the same example: Solve 
𝑑2𝑦

𝑑𝑥2 + 4
𝑑𝑦

𝑑𝑥
+ 5𝑦 = 𝑒−2𝑥𝑐𝑜𝑠𝑥                     

Step 1: Homogeneous Part 

i.e. 
𝑑2𝑦

𝑑𝑥2 + 4
𝑑𝑦

𝑑𝑥
+ 5𝑦 = 0                     

Step 2: Nonhomogeneous Part 
𝑑2𝑦

𝑑𝑥2 + 4
𝑑𝑦

𝑑𝑥
+ 5𝑦 = 𝑒−2𝑥𝑐𝑜𝑠𝑥                    

Characteristic equation: 

𝑚2 + 4𝑚 + 5 = 0 

(𝑚 + 2)2 − 4 + 5 = 0 

𝑚 = −2 ± √−1 

𝑚1 = −2 + i & 𝑚2 = −2 − i 

 

Comment: A pair of complex 
conjugates roots 

 

 

The method of undetermined coefficient: 

RHS: 𝑟(𝑥) = 𝑒−2𝑥𝑐𝑜𝑠𝑥                     

Possible particular solution:  

𝑦𝑝 = 𝑒−2𝑥(𝐶𝑐𝑜𝑠𝑥 + 𝐷𝑠𝑖𝑛𝑥) 

Since 𝑦𝑐 = 𝑒−2𝑥(𝐴𝑐𝑜𝑠𝑥 + 𝐵𝑠𝑖𝑛𝑥) & 𝑦𝑝 = 𝑒−2𝑥(𝐶𝑐𝑜𝑠𝑥 + 𝐷𝑠𝑖𝑛𝑥) 

are linearly dependent, treatment is needed. 

Actual particular solution: 

𝑦𝑝 = 𝑥𝑒−2𝑥(𝐶𝑐𝑜𝑠𝑥 + 𝐷𝑠𝑖𝑛𝑥) 

Solve the coefficient for the particular solution: 

𝑦𝑝 = 𝑥𝑒−2𝑥(𝐶𝑐𝑜𝑠𝑥 + 𝐷𝑠𝑖𝑛𝑥) 
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Complementary solution  

[Option 1] 

:𝑦𝑐 = 𝑐1𝑒(−2+i)𝑥 + 𝑐2𝑒(−2−i)𝑥 
 
 

Complementary solution  

[Option 2] 

     𝑦𝑐 = 𝑒−2𝑥(𝐴𝑐𝑜𝑠𝑥 + 𝐵𝑠𝑖𝑛𝑥) 
 
 
 
 

 

Differentiate it, we get:      

𝑑𝑦𝑝

𝑑𝑥
= 𝑒−2𝑥(𝐶𝑐𝑜𝑠𝑥 + 𝐷𝑠𝑖𝑛𝑥) + 𝑥(−2𝑒−2𝑥)(𝐶𝑐𝑜𝑠𝑥 + 𝐷𝑠𝑖𝑛𝑥)  

             +𝑥𝑒−2𝑥(−𝐶𝑠𝑖𝑛𝑥 + 𝐷𝑐𝑜𝑠𝑥) 

        = 𝑒−2𝑥(𝐶𝑐𝑜𝑠𝑥 + 𝐷𝑠𝑖𝑛𝑥) 

             +𝑥𝑒−2𝑥((−2𝐶 + 𝐷)𝑐𝑜𝑠𝑥 + (−2𝐷 + 𝐶)𝑠𝑖𝑛𝑥) 

 

 
𝑑2𝑦𝑝

𝑑𝑥2 = (−2𝑒−2𝑥)(𝐶𝑐𝑜𝑠𝑥 + 𝐷𝑠𝑖𝑛𝑥) + 𝑒−2𝑥(−𝐶𝑠𝑖𝑛𝑥 + 𝐷𝑐𝑜𝑠𝑥)  

                 +𝑒−2𝑥((−2𝐶 + 𝐷)𝑐𝑜𝑠𝑥 + (−2𝐷 + 𝐶)𝑠𝑖𝑛𝑥) 

                 +𝑥(−2𝑒−2𝑥)((−2𝐶 + 𝐷)𝑐𝑜𝑠𝑥 + (−2𝐷 + 𝐶)𝑠𝑖𝑛𝑥) 

                 +𝑥𝑒−2𝑥((−2𝐶 + 𝐷)(−𝑠𝑖𝑛𝑥) + (−2𝐷 + 𝐶)𝑐𝑜𝑠𝑥) 

            = 𝑒−2𝑥((−4𝐶 + 2𝐷)𝑐𝑜𝑠𝑥 + (−4𝐷 − 2𝐶)𝑠𝑖𝑛𝑥)  

                 +𝑥𝑒−2𝑥((3𝐶 − 4𝐷)𝑐𝑜𝑠𝑥 + (3𝐷 + 4𝐶)𝑠𝑖𝑛𝑥) 

 

Substitute to the ODE equation: 
𝑑2𝑦

𝑑𝑥2 + 4
𝑑𝑦

𝑑𝑥
+ 5𝑦 = 𝑒−2𝑥𝑐𝑜𝑠𝑥                      

>> (𝑒−2𝑥((−4𝐶 + 2𝐷)𝑐𝑜𝑠𝑥 + (−4𝐷 − 2𝐶)𝑠𝑖𝑛𝑥) + 𝑥𝑒−2𝑥((3𝐶 −

4𝐷)𝑐𝑜𝑠𝑥 + (3𝐷 + 4𝐶)𝑠𝑖𝑛𝑥) ) + 4 (𝑒−2𝑥(𝐶𝑐𝑜𝑠𝑥 + 𝐷𝑠𝑖𝑛𝑥) +

𝑥𝑒−2𝑥((−2𝐶 + 𝐷)𝑐𝑜𝑠𝑥 + (−2𝐷 + 𝐶)𝑠𝑖𝑛𝑥)) + 5(𝑥𝑒−2𝑥(𝐶𝑐𝑜𝑠𝑥 +

𝐷𝑠𝑖𝑛𝑥)) = 𝑒−2𝑥𝑐𝑜𝑠𝑥 

>> 𝑒−2𝑥((2𝐷)𝑐𝑜𝑠𝑥 + (−2𝐶)𝑠𝑖𝑛𝑥) = 𝑒−2𝑥𝑐𝑜𝑠𝑥  

 

Comparing the coefficients,  

>>𝑒−2𝑥𝑐𝑜𝑠𝑥: 2𝐷 = 1 

                              𝐷 =
1

2
 

>> 𝑒−2𝑥𝑠𝑖𝑛𝑥: −2𝐶 = 0 

                              𝐶 = 0 

The particular solution: 

𝑦𝑝 = 𝑥𝑒−2𝑥 (0𝑐𝑜𝑠𝑥 +
1

2
𝑠𝑖𝑛𝑥) =

1

2
𝑥𝑒−2𝑥𝑠𝑖𝑛𝑥  

The complete / general solution to 
𝑑2𝑦

𝑑𝑥2 + 4
𝑑𝑦

𝑑𝑥
+ 5𝑦 = 𝑒−2𝑥𝑐𝑜𝑠𝑥 is  

𝑦𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑐 + 𝑦𝑝 = 𝑒−2𝑥(𝐴𝑐𝑜𝑠𝑥 + 𝐵𝑠𝑖𝑛𝑥) +
1

2
𝑥𝑒−2𝑥(𝑠𝑖𝑛𝑥)  

[Comment: Same answer as previous example.] 
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Example 4.5: Solve 
𝑑2𝑦

𝑑𝑥2 + 4𝑦 = 8𝑥2    [RHS - Pure Polynomial Function] 

Step 1: Homogeneous Part 

i.e. 
𝑑2𝑦

𝑑𝑥2 + 4𝑦 = 0                                                                            

Step 2: Nonhomogeneous Part 

𝑑2𝑦

𝑑𝑥2 + 4𝑦 = 8𝑥2                                                                             

Characteristic equation: 

𝑚2 + 4 = 0 

𝑚 = ±√−4 

𝑚1 = 2i & 𝑚2 = −2i 

 

Comment: A pair of complex conjugates 
roots 

 

Complementary solution: 

𝑦𝑐 = 𝑐1𝑒(2i)𝑥 + 𝑐2𝑒(−2i)𝑥 
 

 

The method of undetermined coefficient: 

RHS: 𝑟(𝑥) = 𝑒𝛼𝑥𝑃𝑛(𝑥) = 8𝑥2                     

where  𝛼 = 0, 𝑛 = 2 

Possible particular solution:  

𝑦𝑝 = 𝑒(0)𝑥𝑄2(𝑥) = 𝐴2𝑥2 + 𝐴1𝑥 + 𝐴0 

Since 𝛼 ≠ 𝑚1 & 𝑚2, treatment is not needed. 

 

Comment:  

(i) 𝑦𝑝 = 𝐴2𝑥2 + 𝐴1𝑥 + 𝐴0  and 𝑦𝑐 = 𝑐1𝑒(2i)𝑥 + 𝑐2𝑒(−2i)𝑥 

are linearly independent 

 

Solve the coefficient for the particular solution: 

𝑦𝑝 = 𝐴2𝑥2 + 𝐴1𝑥 + 𝐴0 

Differentiate: 
𝑑𝑦𝑝

𝑑𝑥
= 2𝐴2𝑥 + 𝐴1  

                            
𝑑2𝑦𝑝

𝑑𝑥2 = 2𝐴2  

Substitute to the ODE equation: 
𝑑2𝑦

𝑑𝑥2 + 4𝑦 = 8𝑥2 

>> 2𝐴2 + 4(𝐴2𝑥2 + 𝐴1𝑥 + 𝐴0) = 8𝑥2 

>> 4𝐴2𝑥2 + 4𝐴1𝑥 + 4𝐴0 + 2𝐴2 = 8𝑥2  

Comparing the coefficients,  

>> 𝑥2: 𝐴2 = 2 

>> 𝑥: 𝐴1 = 0 

>> 𝑥0: 𝐴0 = −
𝐴2

2
= −1 

The actual particular solution: 

𝑦𝑝 = 2𝑥2 − 1 

The complete / general solution to 
𝑑2𝑦

𝑑𝑥2 + 4𝑦 = 8𝑥2 is 

𝑦𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑐 + 𝑦𝑝 = 𝑐1𝑒(2i)𝑥 + 𝑐2𝑒(−2i)𝑥 + 2𝑥2 − 1 
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Example 4.6: Solve 
𝑑2𝑦

𝑑𝑥2 − 4
𝑑𝑦

𝑑𝑥
− 12𝑦 = 𝑥𝑒4𝑥 [Mixture of Polynomial & Exponential Function in ‘x’] 

Step 1: Homogeneous Part 

i.e. 
𝑑2𝑦

𝑑𝑥2 − 4
𝑑𝑦

𝑑𝑥
− 12𝑦 = 0 

Step 2: Nonhomogeneous Part 

i.e. 
𝑑2𝑦

𝑑𝑥2 − 4
𝑑𝑦

𝑑𝑥
− 12𝑦 = 𝑥𝑒4𝑥 

Characteristic equation: 

𝑚2 − 4𝑚 − 12 = 0 

(𝑚 − 6)(𝑚 + 2) = 0 

𝑚1 = 6 & 𝑚2 = −2 

 

Comment: Real and distinct 
roots 

 

Complementary solution: 

𝑦𝑐 = 𝑐1𝑒6𝑥 + 𝑐2𝑒−2𝑥 

 

 

 

 

The method of undetermined coefficient: 

RHS: 𝑟(𝑥) = 𝑒𝛼𝑥𝑃𝑛(𝑥) = 𝑥𝑒4𝑥                     

where  𝛼 = 4, 𝑛 = 1 

Possible particular solution:  

𝑦𝑝 = 𝑒(4)𝑥𝑄1(𝑥) = (𝐴𝑥 + 𝐵)𝑒4𝑥 

Since  𝛼 ≠ 𝑚1 & 𝑚2, treatment is not needed. 

 

Comment:  
(i) 𝑦𝑝 = (𝐴𝑥 + 𝐵)𝑒4𝑥 and 𝑦𝑐 = 𝑐1𝑒6𝑥 + 𝑐2𝑒−2𝑥 are linearly 

independent 

Solve the coefficient for the particular solution: 

𝑦𝑝 = (𝐴𝑥 + 𝐵)𝑒4𝑥 

Differentiate it, we get:      

𝑑𝑦𝑝

𝑑𝑥
= 4(𝐴𝑥 + 𝐵)𝑒4𝑥 + (𝐴)𝑒4𝑥  

𝑑2𝑦𝑝

𝑑𝑥2 = 16(𝐴𝑥 + 𝐵)𝑒4𝑥 + 8(𝐴)𝑒4𝑥  

Substitute to the ODE equation: 
𝑑2𝑦

𝑑𝑥2 − 4
𝑑𝑦

𝑑𝑥
− 12𝑦 = 𝑥𝑒4𝑥 

>> (16(𝐴𝑥 + 𝐵)𝑒4𝑥 + 8(𝐴)𝑒4𝑥 ) − 4(4(𝐴𝑥 + 𝐵)𝑒4𝑥 + (𝐴)𝑒4𝑥) −
12(𝐴𝑥 + 𝐵)𝑒4𝑥 = 𝑥𝑒4𝑥 

>> ((4𝐴 − 12𝐵)𝑒4𝑥 ) − 12𝐴𝑥𝑒4𝑥 = 𝑥𝑒4𝑥  

Comparing the coefficients,  

>> 𝑥𝑒4𝑥: 𝐴 =
1

−12
 

>> 𝑒4𝑥: 𝐵 =
4𝐴

12
= −

1

36
 

The actual particular solution: 

𝑦𝑝 = (
1

−12
𝑥 −

1

36
) 𝑒4𝑥  

The complete/ general solution to 
𝑑2𝑦

𝑑𝑥2 − 4
𝑑𝑦

𝑑𝑥
− 12𝑦 = 𝑥𝑒4𝑥 is  

𝑦𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑐 + 𝑦𝑝 = 𝑐1𝑒6𝑥 + 𝑐2𝑒−2𝑥 + (
1

−12
𝑥 −

1

36
) 𝑒4𝑥  
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Example 4.7: Solve 
𝑑2𝑦

𝑑𝑥2 − 4
𝑑𝑦

𝑑𝑥
+ 3𝑦 = 3𝑒2𝑥 + 4𝑥 [RHS - Mixture of Polynomial & Exponential Function in ‘+’] 

Step 1: Homogeneous Part 

i.e. 
𝑑2𝑦

𝑑𝑥2 − 4
𝑑𝑦

𝑑𝑥
+ 3𝑦 = 0    

Step 2: Nonhomogeneous Part 

i.e. 
𝑑2𝑦

𝑑𝑥2 − 4
𝑑𝑦

𝑑𝑥
+ 3𝑦 = 3𝑒2𝑥 + 4𝑥    

Characteristic equation: 

𝑚2 − 4𝑚 + 3 = 0 

(𝑚 − 1)(𝑚 − 3) = 0 

𝑚1 = 1 & 𝑚2 = 3 

 

Comment: Real and distinct 
roots 

 

Complementary solution: 

𝑦𝑐 = 𝑐1𝑒𝑥 + 𝑐2𝑒3𝑥 
 

The method of undetermined coefficient: 

RHS (1): 𝑟1(𝑥) = 𝑒𝛼𝑥𝑃𝑛(𝑥) = 3𝑒2𝑥                     

where  𝛼 = 2, 𝑛 = 0 

RHS (2): 𝑟2(𝑥) = 𝑒𝛼𝑥𝑃𝑛(𝑥) = 4𝑥                     

where  𝛼 = 0, 𝑛 = 1 

 

Possible particular solution:  

𝑦𝑝,1 = 𝑒(2)𝑥𝑄0(𝑥) = 𝐴𝑒2𝑥 

𝑦𝑝,2 = 𝑒(0)𝑥𝑄1(𝑥) = 𝐵𝑥 + 𝐶 

𝑦𝑝,𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑝,1 + 𝑦𝑝,2 = 𝐴𝑒2𝑥 + 𝐵𝑥 + 𝐶 

Since  𝛼 ≠ 𝑚1 & 𝑚2, treatment is not needed. 

 

Comment:  
(i) 𝑦𝑝 = 𝐴𝑒2𝑥 + 𝐵𝑥 + 𝐶 and 𝑦𝑐 = 𝑐1𝑒𝑥 + 𝑐2𝑒3𝑥 are linearly 

independent 

Solve the coefficient for the particular solution: 

𝑦𝑝 = 𝐴𝑒2𝑥 + 𝐵𝑥 + 𝐶 

 

Differentiate: 
𝑑𝑦𝑝

𝑑𝑥
= 2𝐴𝑒2𝑥 + 𝐵  

                            
𝑑2𝑦𝑝

𝑑𝑥2 = 4𝐴𝑒2𝑥  

 

Substitute to the ODE equation: 
𝑑2𝑦

𝑑𝑥2 − 4
𝑑𝑦

𝑑𝑥
+ 3𝑦 = 3𝑒2𝑥 + 4𝑥    

>> (4𝐴𝑒2𝑥 ) − 4(2𝐴𝑒2𝑥 + 𝐵) + 3(𝐴𝑒2𝑥 + 𝐵𝑥 + 𝐶) = 3𝑒2𝑥 + 4𝑥 

>> (−𝐴𝑒2𝑥 ) + (3𝐵𝑥) + 3𝐶 − 4𝐵 = 3𝑒2𝑥 + 4𝑥  
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Comparing the coefficients,  

>> 𝑒2𝑥: 𝐴 = −3 

>> 𝑥: 𝐵 =
4

3
 

>> 𝑥0: 𝐶 =
4𝐵

3
=

16

9
 

 

The actual particular solution: 

𝑦𝑝 = −3𝑒2𝑥 +
4

3
𝑥 +

16

9
  

 

The complete/ general solution to  
𝑑2𝑦

𝑑𝑥2 − 4
𝑑𝑦

𝑑𝑥
+ 3𝑦 = 3𝑒2𝑥 + 4𝑥 is  

𝑦𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑐 + 𝑦𝑝 = 𝑐1𝑒𝑥 + 𝑐2𝑒3𝑥 − 3𝑒2𝑥 +
4

3
𝑥 +

16

9
  

 

Hint: The example above illustrates the linearity or superposition principle, where the solutions can be 

added directly as illustrated below. 

 

>>  𝑦𝑝,1 = −3𝑒2𝑥 is the particular solution to  
𝑑2𝑦

𝑑𝑥2 − 4
𝑑𝑦

𝑑𝑥
+ 3𝑦 = 3𝑒2𝑥;  

>> 𝑦𝑝,2 =
4

3
𝑥 +

16

9
  is the particular solution to 

𝑑2𝑦

𝑑𝑥2 − 4
𝑑𝑦

𝑑𝑥
+ 3𝑦 = 4𝑥;  

>> 𝑦𝑝,𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑝,1 + 𝑦𝑝,2 is the total particular solution to 
𝑑2𝑦

𝑑𝑥2 − 4
𝑑𝑦

𝑑𝑥
+ 3𝑦 = 3𝑒2𝑥 + 4𝑥. 

 

Graphical representation of the linear superposition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stiffness, k Damping, c 

Mass, m 

displacement, y(t) 

Force, F(t) 

System modeling #1 

𝑚�̈� + 𝑐�̇� + 𝑘𝑦 = 𝐹1(𝑡) 

 

 

 

𝐹1(𝑡) = 3𝑒2𝑡 
𝑦𝑝,1 = −3𝑒2𝑡 

System modeling #2 

𝑚�̈� + 𝑐�̇� + 𝑘𝑦 = 𝐹2(𝑡) 

 

 

 

𝐹2(𝑡) = 4𝑡 𝑦𝑝,2 =
4

3
𝑡 +

16

9
  

System modeling #3 

𝑚�̈� + 𝑐�̇� + 𝑘𝑦 = 𝐹1(𝑡) + 𝐹2(𝑡) 

 

 

 

𝐹𝑡𝑜𝑡𝑎𝑙(𝑡) = 3𝑒2𝑡 + 4𝑡 
𝑦𝑝,𝑡𝑜𝑡𝑎𝑙 = −3𝑒2𝑡 +

4

3
𝑡 +

16

9
  

 (2 forces acting simultaneously) 
(Responses can be obtained 

by linear superposition) 
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Recommendation: In engineering application, learning mathematics tool such as the strategy / 

method to solve ODE problems should not be the main focus, as this can be done perfectly with the use 

of computer & algorithm. However, it is important for engineers to evaluate and justify the 

appropriateness of the selected mathematical tool in solving certain engineering problem.  Furthermore, 

engineers should learn to interpret the result and data analysis. For example, we can obtain the solutions 

of charge and current from the 2nd order ODE that represents RLC circuit problem. We should plot it 

and do further analysis to know the characteristic and behaviour of the system. This enables us to 

design things / systems in scientific approach (i.e. analytical study in this case) instead of trial and error.  

 

 

4.3 SOLVING GENERAL NON-HOMOGENEOUS LINEAR ODE WITH METHOD OF 

VARIATION OF PARAMETERS 

The method of undetermined coefficients discussed previously is only applicable for simple functions in 

its RHS, such as a mixture of exponential and polynomial functions. However, it is impractical to solve 

complicated function other than exponential and polynomial functions.  

 

To solve 2nd order ODE with complicated function such as tangent function, Mixture of Polynomial & 

Exponential Function in ‘÷’, logarithmic function, etc, we can use the method of variation of parameters. 

 

The steps of implementing the method of variation of parameters are as follow: 

(1) Standard form:  
𝑑2𝑦

𝑑𝑥2 + 𝑝(𝑥)
𝑑𝑦

𝑑𝑥
+ 𝑞(𝑥)𝑦 = 𝑟(𝑥) 

 

(2) Compute the complementary solution, 𝑦𝑐 = 𝑐1𝑦1(𝑥) + 𝑐2𝑦2(𝑥) by using known method as before, 

where 𝑐1 & 𝑐2 are arbitrary constants. 

 

(3) Compute the particular solution, 𝑦𝑝 = 𝑢1(𝑥)𝑦1(𝑥) + 𝑢2(𝑥)𝑦2(𝑥)  

where function 𝑢1(𝑥) = − ∫
𝑟(𝑥)𝑦2(𝑥)

𝑊(𝑦1,𝑦2)
𝑑𝑥 and 𝑢2(𝑥) = ∫

𝑟(𝑥)𝑦1(𝑥)

𝑊(𝑦1,𝑦2)
𝑑𝑥; 

Wronskian, 𝑊(𝑦1, 𝑦2) = |
𝑦1 𝑦2

𝑑𝑦1

𝑑𝑥

𝑑𝑦2

𝑑𝑥

| 

 

However, the drawback of this technique is that it is time consuming to complete the integration 

operation and there are cases where the integration function cannot be solved analytically (using 

calculus). In this case, we may need an advance tool such as numerical method to solve the integration 

problem. 
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Example 4.8: Solve 
𝑑2𝑦

𝑑𝑥2 + 2
𝑑𝑦

𝑑𝑥
+ 𝑦 = 𝑒−𝑥𝑙𝑛𝑥  

Step 1: Homogeneous Part 

i.e. 
𝑑2𝑦

𝑑𝑥2 + 2
𝑑𝑦

𝑑𝑥
+ 𝑦 = 0, 

Step 2: Nonhomogeneous Part 

i.e. 
𝑑2𝑦

𝑑𝑥2 + 2
𝑑𝑦

𝑑𝑥
+ 𝑦 = 𝑒−𝑥𝑙𝑛𝑥 

 

Characteristic equation: 

𝑚2 + 2𝑚 + 1 = 0  

(𝑚 + 1)2 = 0  

𝑚1 =  𝑚2 = −1 

 

Comment: Repeated real root 

 

Complementary solution: 

𝑦𝑐 = 𝑐1𝑒−𝑥 + 𝑐2𝑥𝑒−𝑥 
 
 

Comment:  
(i) 𝑦𝑐,1 = 𝑒−𝑥 and 𝑦𝑐,2 = 𝑒−𝑥  are 

linearly dependent. 
(ii) Treatment is done so that 𝑦𝑐,1 =

𝑒−𝑥 and 𝑦𝑐,2 = 𝑥𝑒−𝑥  are linearly 
independent. 

 
Compute the Wronskian, 𝑊(𝑦1, 𝑦2) 

= |

𝑦1 𝑦2

𝑑𝑦1

𝑑𝑥

𝑑𝑦2

𝑑𝑥

| 

= |
𝑒−𝑥 𝑥𝑒−𝑥

−𝑒−𝑥 −𝑥𝑒−𝑥 + 𝑒−𝑥| 

= 𝑒−𝑥(−𝑥𝑒−𝑥 + 𝑒−𝑥) − (𝑥𝑒−𝑥)(−𝑒−𝑥) 
= 𝑒−2𝑥 
 
 

The method of undetermined coefficient: 

RHS : 𝑟(𝑥) = 𝑒𝛼𝑥𝑃𝑛(𝑥) = 𝑒−𝑥𝑙𝑛𝑥                     

where  𝛼 = −1, 𝑛 = 𝑛𝑜𝑡 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 

Comment: The RHS function is a complicated function that 
can’t solved by the method of undetermined coefficient. 

 

The method of variation of parameters: 

𝑢1(𝑥) = − ∫
𝑟(𝑥)𝑦2(𝑥)

𝑊(𝑦1,𝑦2)
𝑑𝑥  

 = − ∫
(𝑒−𝑥𝑙𝑛𝑥)(𝑥𝑒−𝑥)

𝑒−2𝑥 𝑑𝑥  

 = − ∫ 𝑥𝑙𝑛𝑥 𝑑𝑥  

Using integration by part method: 

Let 𝑢 = 𝑙𝑛𝑥; 𝑑𝑣 = 𝑥𝑑𝑥 

𝑑𝑢 =
1

𝑥
𝑑𝑥; 𝑣 =

𝑥2

2
 

𝑢1(𝑥) = − ∫ 𝑥𝑙𝑛𝑥 𝑑𝑥 = −(𝑢𝑣 − ∫ 𝑣𝑑𝑢)  

= − (𝑙𝑛𝑥 (
𝑥2

2
) − ∫

𝑥2

2

1

𝑥
𝑑𝑥)  

= − (𝑙𝑛𝑥 (
𝑥2

2
) − ∫

𝑥

2
𝑑𝑥)  

= (−𝑙𝑛𝑥 (
𝑥2

2
) +

𝑥2

4
)  

𝑢2(𝑥) = ∫
𝑟(𝑥)𝑦1(𝑥)

𝑊(𝑦1,𝑦2)
𝑑𝑥  

  = ∫
(𝑒−𝑥𝑙𝑛𝑥)(𝑒−𝑥)

𝑒−2𝑥 𝑑𝑥  

  = ∫ 𝑙𝑛𝑥 𝑑𝑥  

Using integration by part method: 

Let 𝑢 = 𝑙𝑛𝑥; 𝑑𝑣 = 𝑑𝑥, then  𝑑𝑢 =
1

𝑥
𝑑𝑥; 𝑣 = 𝑥 

𝑢2(𝑥) = ∫ 𝑙𝑛𝑥 𝑑𝑥 = (𝑢𝑣 − ∫ 𝑣𝑑𝑢)  

    = (𝑙𝑛𝑥(𝑥) − ∫ 𝑥
1

𝑥
𝑑𝑥)  

 = (𝑙𝑛𝑥(𝑥) − ∫ 1𝑑𝑥)  
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 = (𝑙𝑛𝑥(𝑥) − 𝑥)  

The particular solution: 

𝑦𝑝 = 𝑢1(𝑥)𝑦1(𝑥) + 𝑢2(𝑥)𝑦2(𝑥)   

= (−𝑙𝑛𝑥 (
𝑥2

2
) +

𝑥2

4
) 𝑒−𝑥 + (𝑙𝑛𝑥(𝑥) − 𝑥)(𝑥𝑒−𝑥)  

 = (𝑙𝑛𝑥 (
𝑥2

2
) −

3𝑥2

4
) 𝑒−𝑥  

 

The complete / general solution to 
𝑑2𝑦

𝑑𝑥2 + 2
𝑑𝑦

𝑑𝑥
+ 𝑦 = 𝑒−𝑥𝑙𝑛𝑥 is  

𝑦𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑐 + 𝑦𝑝 = 𝑐1𝑒−𝑥 + 𝑐2𝑥𝑒−𝑥 + (𝑙𝑛𝑥 (
𝑥2

2
) −

3𝑥2

4
) 𝑒−𝑥  
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Example 4.9: Solve 
𝑑2𝑦

𝑑𝑥2 − 2
𝑑𝑦

𝑑𝑥
+ 𝑦 =

𝑒𝑥

𝑥2+1
  

Step 1: Homogeneous Part 

i.e. 
𝑑2𝑦

𝑑𝑥2 − 2
𝑑𝑦

𝑑𝑥
+ 𝑦 = 0 

Step 2: Nonhomogeneous Part 

i.e. 
𝑑2𝑦

𝑑𝑥2 − 2
𝑑𝑦

𝑑𝑥
+ 𝑦 =

𝑒𝑥

𝑥2+1
 

Characteristic equation: 

𝑚2 − 2𝑚 + 1 = 0  

(𝑚 − 1)2 = 0  

𝑚1 =  𝑚2 = 1 

 

Comment: Repeated real root 

 

Complementary solution: 

𝑦𝑐 = 𝑐1𝑒𝑥 + 𝑐2𝑥𝑒𝑥 
 
 

Comment:  
(i) 𝑦𝑐,1 = 𝑒𝑥 and 𝑦𝑐,2 = 𝑒𝑥  are 

linearly dependent. 
(ii) Treatment is done so that 

𝑦𝑐,1 = 𝑒𝑥 and 𝑦𝑐,2 = 𝑥𝑒𝑥  are 
linearly independent. 

 
 
Compute the Wronskian, 
𝑊(𝑦1, 𝑦2) 

= |

𝑦1 𝑦2

𝑑𝑦1

𝑑𝑥

𝑑𝑦2

𝑑𝑥

| 

= |
𝑒𝑥 𝑥𝑒𝑥

𝑒𝑥 𝑥𝑒𝑥 + 𝑒𝑥| 

= 𝑒𝑥(𝑥𝑒𝑥 + 𝑒𝑥) − (𝑥𝑒𝑥)(𝑒𝑥) 
= 𝑒2𝑥 

 

The method of undetermined coefficient: 

RHS : 𝑟(𝑥) = 𝑒𝛼𝑥𝑃𝑛(𝑥) =
𝑒𝑥

𝑥2+1
                     

where  𝛼 = 1, 𝑛 = 𝑛𝑜𝑡 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 

Comment: The RHS function is a complicated function that can’t 
solved by the method of undetermined coefficient. 

 

The method of variation of parameters: 

𝑢1(𝑥) = − ∫
𝑟(𝑥)𝑦2(𝑥)

𝑊(𝑦1,𝑦2)
𝑑𝑥  

 = − ∫
(

𝑒𝑥

𝑥2+1
)(𝑥𝑒𝑥)

𝑒2𝑥 𝑑𝑥  

 = − ∫
𝑥

𝑥2+1
𝑑𝑥  

Using substitution method: 

Let 𝑢 = 𝑥2 + 1; 𝑑𝑢 = 2𝑥𝑑𝑥 

𝑢1(𝑥) = − ∫
1

𝑢

𝑑𝑢

2
   

= −
1

2
𝑙𝑛|𝑢|   

= −
1

2
𝑙𝑛|𝑥2 + 1|  

𝑢2(𝑥) = ∫
𝑟(𝑥)𝑦1(𝑥)

𝑊(𝑦1,𝑦2)
𝑑𝑥  

  = ∫
(

𝑒𝑥

𝑥2+1
)(𝑒𝑥)

𝑒2𝑥 𝑑𝑥  

  = ∫
1

𝑥2+1
𝑑𝑥  

Using trigonometric substitution: Let 𝑥 = 𝑡𝑎𝑛𝜃, 
𝑑𝑥

𝑑𝜃
= 𝑠𝑒𝑐2𝜃 

𝑢2(𝑥) = ∫
1

𝑡𝑎𝑛2𝜃+1
𝑠𝑒𝑐2𝜃𝑑𝜃   

Using 𝑡𝑟𝑖𝑔𝑜𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐 identity:  𝑡𝑎𝑛2𝜃 + 1 = 𝑠𝑒𝑐2𝜃 

𝑢2(𝑥) = ∫ 1 𝑑𝜃 = 𝜃   

= 𝑡𝑎𝑛−1𝑥 
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The particular solution: 

𝑦𝑝 = 𝑢1(𝑥)𝑦1(𝑥) + 𝑢2(𝑥)𝑦2(𝑥)   

= (−
1

2
𝑙𝑛|𝑥2 + 1|) 𝑒𝑥 + (𝑡𝑎𝑛−1𝑥)(𝑥𝑒𝑥)  

 = (𝑥𝑡𝑎𝑛−1𝑥 −
1

2
𝑙𝑛|𝑥2 + 1|) 𝑒𝑥  

 

The complete / general solution to 
𝑑2𝑦

𝑑𝑥2 − 2
𝑑𝑦

𝑑𝑥
+ 𝑦 =

𝑒𝑥

𝑥2+1
 is  

𝑦𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑐 + 𝑦𝑝 = 𝑐1𝑒𝑥 + 𝑐2𝑥𝑒𝑥 + (𝑥𝑡𝑎𝑛−1𝑥 −
1

2
𝑙𝑛|𝑥2 + 1|) 𝑒𝑥 

 

 


