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POWER SERIES SOLUTIONS FOR 

DIFFERENTIAL EQUATIONS 
WEEK 6: POWER SERIES SOLUTIONS FOR DIFFERENTIAL EQUATIONS 

6.1 Power series method 

Power Series Method 

The power series method is the standard basic method for solving linear differential equations with 

variable coefficients. It gives solutions in the form of power series. 

 

Power Series 

A power series is an infinite series of the form 

                        ∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛

∞

𝑛=0

  

=   𝑎0 +  𝑎1(𝑥 − 𝑥0)  + 𝑎2(𝑥 − 𝑥0)2  + ⋯                                                   (1) 

where a0, a1, a2, ... are real constants, called the coefficients of the series, x0 is a constant, called the 

center of the series, and x is a variable. 

 

In particular, if x0 = 0, a power series in powers of x is obtained 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

  =   𝑎0  +  𝑎1𝑥 + 𝑎2𝑥2  + 𝑎3𝑥3 + ⋯ 

 

Familiar examples of power series: 

(i)                
1

1 − 𝑥
  =    ∑ 𝑥𝑚

∞

𝑚=0

   =   1 +  𝑥 +  𝑥2 + ⋯ 

(ii)                     𝑒𝑥   =    ∑  
𝑥𝑛

𝑛!

∞

𝑛=0

  =   1 +  𝑥 +  
𝑥2

2!
 +  

𝑥3

3!
 + ⋯ 

(iii)              cos 𝑥   =     ∑
(−1)𝑛𝑥2𝑛

(2𝑛)!

∞

𝑛=0

      =    1 −  
𝑥2

2!
  +  

𝑥4

4!
  ± ⋯ 

(iv)              sin 𝑥    =     ∑
(−1)𝑛𝑥2𝑛+1

(2𝑛 + 1)!

∞

𝑛=0

  =     𝑥  −   
𝑥3

3!
  +   

𝑥5

5!
  ± ⋯ 



2 
 

(v)                ln (1 + 𝑥) = ∑
(−1)𝑛+1𝑥𝑛

𝑛
= 𝑥 −  

𝑥2

2
 +  

𝑥3

3
 −  ⋯

∞

𝑛=1

 

 

6.1.1 Basic concepts of power series 

The nth partial sum of (1) is 

𝑠𝑛(𝑥) = 𝑎0 +  𝑎1(𝑥 − 𝑥0) +  𝑎2(𝑥 − 𝑥0)2 + ⋯ +  𝑎𝑛(𝑥 − 𝑥0)𝑛                                              (2) 

where n = 0, 1, ... .  If the terms of sn are from (1), the remaining expression is 

𝑅𝑛(𝑥)  =  𝑎𝑛+1(𝑥 − 𝑥0)𝑛+1 +  𝑎𝑛+2(𝑥 − 𝑥0)𝑛+2 + ⋯ 

and is called the remainder of (1) after the term 𝑎𝑛(𝑥 − 𝑥0)𝑛. 

 

Example: 

For the geometric series 

1 + 𝑥 + 𝑥2 + ⋯ + 𝑥𝑛 + ⋯ 

Then: 

𝑠1 = 1 + 𝑥                                                 𝑅1 = 𝑥2 + 𝑥3 + 𝑥4 + ⋯ 

𝑠2 = 1 + 𝑥 + 𝑥2                                       𝑅2 = 𝑥2 + 𝑥3 + 𝑥4 + ⋯ 

etc. 

 

If for some x = x1, sn(x) converges, that is, lim
𝑛→∞

𝑠𝑛(𝑥1) = 𝑠(𝑥1) then the series (1) converges, or is called 

convergent at x = x1; and the number s(x1) is called the value or sum of (1) at x1, and can be written as 

𝑠(𝑥1) = ∑ 𝑎𝑛

∞

𝑛=0

(𝑥1 − 𝑥0)𝑛 

If the sequence is divergent at x = x1, then the series (1) is said to diverge, or to be divergent at x = x1. 

 

Note: 

1. The series (1) converges at x = x0 when all its terms except for the first a0 are zero. In unusual 

cases this may be the only x for which (1) converges.  

 

2. If there are further values of x for which the series (1) converges, these value form an interval, 

called the convergence interval. If this interval is finite, it has the midpoint x0 so that it is of the 

form 

|𝑥 − 𝑥0| < 𝑅 
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and the series (1) converges for all x such that |𝑥 − 𝑥0| < 𝑅 and diverges for all x such that 

|𝑥 − 𝑥0| > 𝑅. The number R is called the radius of convergence of (1). It can be obtained from 

either of the following formulas: 

(𝑎)   𝑅 =
1

lim
𝑛→∞

√|𝑎𝑚|𝑛
                           (𝑏)   𝑅 = lim

𝑛→∞
|
𝑎𝑛+1

𝑎𝑛
|                                                    (3) 

provided these limits exist and are not zero. [If they are infinite, then (1) converges only at the 

center x0.] 

 

3. The convergence interval may sometimes be infinite, that is, (1) converges  for all x. For 

example, if the limit in (3a) and (3b) is zero. Then 𝑅 = ∞, for convenience. 

 

4. Since power series are functions of x and we know that not every series will in fact exist, it then 
makes sense to ask if a power series will exist for all x. This question is answered by looking at 
the convergence of the power series. We say that a power series converges for x = c if the 
series, 

∑ 𝑎𝑛

∞

𝑛=0

(𝑐 − 𝑥0)𝑛 

converges. Recall that this series will converge if the limit of partial sums, 

lim
𝑁→∞

∑ 𝑎𝑛

𝑁

𝑛=0

(𝑐 − 𝑥0)𝑛 

exists and is finite. In other words, a power series will converge for x = c if 

∑ 𝑎𝑛

∞

𝑛=0

(𝑐 − 𝑥0)𝑛 

is a finite number. 

 

5. A power series will always converge if x = x0. In this case the power series will become 

∑ 𝑎𝑛

∞

𝑛=0

(𝑐 − 𝑥0)𝑛 = 𝑎0 

 

With this it is known now that power series are guaranteed to exist for at least one value of x. 
The following fact about the convergence of a power series is derived. 
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Fact 

Given a power series, (1), there will exist a number 0 ≤ 𝜌 ≤ ∞ so that the power series will converge 
for|𝑥 − 𝑥0| < 𝜌 and diverge for |𝑥 − 𝑥0| > 𝜌. This number is called the radius of convergence. 

6.1.2 Test for convergence 

 

1. If  lim
𝑛→∞

𝑢𝑛 = 0  the series may be convergent; and 

if  lim
𝑛→∞

𝑢𝑛 ≠ 0 the series is certainly divergent. 

 

2. Comparison test – useful standard series 

1

1𝑝
+

1

2𝑝
+

1

3𝑝
+

1

4𝑝
+

1

5𝑝
+ ⋯ +

1

𝑛𝑝
+ ⋯ 

For p > 1, the series converges; for p < 1, the series diverges. 

 

3. D’Alembert’s Ratio Test for positive terms 

Let u1 + u2 + u3 + u4 + ... + un + … be a series of positive terms. Find expressions for un and un+1, 

that is, the nth term and the (n + 1)th term, respectively, and form the ratio 

𝑢𝑛+1

𝑢𝑛
 

Then, find the limiting value for this ratio,  

𝜌 = lim
𝑛→∞

𝑢𝑛+1

𝑢𝑛
 

If  < 1, the series converges; 

    > 1, the series diverges; 

    = 1, the series may converge or diverge and the test gives no definite information. 

 

4. For general series: 

(i) if ∑|𝑢𝑛| converges, ∑ 𝑢𝑛 is absolutely convergent 

(ii) if ∑|𝑢𝑛| diverges, but ∑ 𝑢𝑛 converges, then ∑ 𝑢𝑛 is conditionally convergent 
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Example 6.1: 

Find the radius of convergence of the following series. 

1.          ∑
𝑘

2𝑘

∞

𝑘=1

 

Solution: 

𝜌 =  lim 
𝑘→∞

|
𝑘 + 1

2𝑘+1
∙

2𝑘

𝑘
| =  lim 

𝑘→∞
|
𝑘 + 1

2𝑘
|  =

1

2
  lim 

𝑘→∞
|
𝑘 + 1

𝑘
| =  

1

2
  lim 

𝑘→∞
|1 +

1

𝑘
| =  

1

2
 

The series converges 

 

2.        ∑
(−1)𝑘(𝑥 − 3)𝑘

3𝑘(𝑘 + 1)

∞

𝑘=1

 

Solution: 

𝜌 =  lim
𝑘→∞

|
(−1)𝑘+1(𝑥 − 3)𝑘+1

3𝑘+1(𝑘 + 1 + 1)
∙

3𝑘(𝑘 + 1)

(−1)𝑘(𝑥 − 3)𝑘
| =  lim 

𝑘→∞
|
(−1)(𝑥 − 3)(𝑘 + 1)

3(𝑘 + 2)
| 

     =
|(𝑥 − 3)|

3
  lim 

𝑘→∞
|
(−1)(𝑘 + 1)

(𝑘 + 2)
| =    

|(𝑥 − 3)|

3
 ∙ 1 =  

|(𝑥 − 3)|

3
  

Series converges when 𝜌 < 1 

|(𝑥 − 3)|

3
< 1 

|(𝑥 − 3)| < 3 

−(𝑥 − 3) < 3      ⇒        𝑥 > 0 

or 

(𝑥 − 3) < 3         ⇒        𝑥 < 6 

Convergence interval (0, 6) 

Radius of convergence 3 
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6.1.3 Operations of power series 

Three permissible operations on power series: differentiation, addition, and multiplication. 

(1) Termwise  differentiation 

A power series may be differentiated term by term. If 

𝑦(𝑥) = ∑ 𝑎𝑛

∞

𝑛=0

(𝑥 − 𝑥0)𝑛 

converges for |𝑥 − 𝑥0| < 𝑅 where R > 0, then the series obtained by differentiating term by 

term also converges for those x and represents the derivative y’ of y for those x, that is, 

𝑦′(𝑥) = ∑ 𝑛𝑎𝑛

∞

𝑛=1

(𝑥 − 𝑥0)𝑛−1 

Similarly, 

𝑦′′(𝑥) = ∑ 𝑛(𝑛 − 1)𝑎𝑛

∞

𝑛=2

(𝑥 − 𝑥0)𝑛−2 

and so on. 

 

(2) Termwise  addition 

Two power series may be added term by term. If the series 

∑ 𝑎𝑛

∞

𝑛=0

(𝑥 − 𝑥0)𝑛         and         ∑ 𝑏𝑛

∞

𝑛=0

(𝑥 − 𝑥0)𝑛 

have positive radii of convergence and their sums are f(x) and g(x), respectively, then the series 

∑(𝑎𝑛

∞

𝑛=0

+ 𝑏𝑛)(𝑥 − 𝑥0)𝑛 

converges and represent f(x) + g(x) for each x that lies in the interior of the convergence interval 

of each of the given series. 

(3) Termwise  multiplication 

Two power series may be multiplied term by term. Suppose that 

∑ 𝑎𝑛

∞

𝑛=0

(𝑥 − 𝑥0)𝑛         and         ∑ 𝑏𝑛

∞

𝑛=0

(𝑥 − 𝑥0)𝑛 

have positive radii of convergence and let f(x) and g(x) be their sums, respectively. Then the 

series obtained by multiplying each term of the first series by each term of the second series 

and collecting like powers of   x – x0, that is, 
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∑(𝑎0𝑏𝑛 + 𝑎1𝑏𝑛−1 + ⋯ + 𝑎𝑛𝑏0)(𝑥 − 𝑥0)𝑛

∞

𝑛=0

 

= 𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0)(𝑥 − 𝑥0) + (𝑎0𝑏2 + 𝑎1𝑏1 + 𝑎2𝑏0)(𝑥 − 𝑥0)2 + ⋯ 

converges and represents f(x)g(x) for each x in the interior of convergence interval of each of 

the given series. 

 

6.1.4 Vanishing all coefficients –  a condition that is a basic tool of the power series 

method 

If a power series has a positive radius of convergence and a sum that is identically zero throughout its 

interval of convergence, then each coefficient of the series is zero. 

 

Sifting summation indices 

(1) An index of summation is a dummy and can be changed. 

Example: 

∑
3𝑛𝑛2

𝑛!

∞

𝑛=1

= ∑
3𝑘𝑘2

𝑘!

∞

𝑘=1

= 1 + 18 +  
81

2
+ ⋯. 

 

(2) An index of summation can be “shifted”. 

If set n = s + 2, then s = n – 2, and 

∑ 𝑛(𝑛 − 1)𝑎𝑛

∞

𝑛=2

(𝑥 − 𝑥0)𝑛−2 = ∑(𝑠 + 2)(𝑠 + 1)𝑎𝑠+2𝑥𝑠

∞

𝑠=0

= 2𝑎2 + 6𝑎3𝑥 + 12𝑎4𝑥2 + ⋯ 

 

When writing the sum of two series, 

𝑥2 ∑ 𝑛(𝑛 − 1)𝑎𝑛

∞

𝑛=2

𝑥𝑛−2 + 2 ∑ 𝑛𝑎𝑛

∞

𝑛=1

𝑥𝑛−1 

= 𝑥2(2𝑎2 + 6𝑎3𝑥 + 12𝑎4𝑥2 + ⋯ ) + 2(𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ 

as a single series; firstly, take x2 and 2, respectively, inside the summation, obtaining 

∑ 𝑛(𝑛 − 1)𝑥𝑛

∞

𝑛=2

+ ∑ 2𝑛𝑎𝑛𝑥𝑛−1

∞

𝑛=1

 

and then set n = s and n – 1 = s, respectively, obtaining 
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∑ 𝑠(𝑠 − 1)𝑎𝑠

∞

𝑠=2

𝑥𝑠 + ∑ 2(𝑠 + 1)

∞

𝑠=0

𝑎𝑠+1𝑥𝑠 

where s = 2 can be replaced by s = 0, so that 

∑[𝑠(𝑠 − 1)𝑎𝑠 + 2(𝑠 + 1)𝑎𝑠+1]

∞

𝑠=0

𝑥𝑠 = 2𝑎1 + 4𝑎2𝑥 + (2𝑎2 + 6𝑎3)𝑥2 + (6𝑎3 + 8𝑎4)𝑥3 + ⋯ 

 

Theorem (Existence of power series solution) 

If the functions p, q, and r in the differential equation 

(4)                                                     𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑟(𝑥) 

are analytic at x =x0, then every solution y(x) of (4) is analytic at x = x0 and can thus be represented by a 
power series in powers x – x0 with radius of convergence R > 0. 

 

Example 6.2: 

Find the series of the following functions. 

1.       𝑒𝑥2
 

Solution: 

𝑒𝑥2
  =    ∑  

(𝑥2)𝑚

𝑚!

∞

𝑚=0

  =   1 + 𝑥2  +  
(𝑥2)2

2!
 + 

(𝑥2)3

3!
 + ⋯ 

 =  1 +  𝑥2 +   
𝑥4

2
 +   

𝑥6

6
 + ⋯ 

 

2.       𝑒𝑥 + sin 𝑥 

Solution: 

𝑒𝑥 + sin 𝑥 =  ∑  
𝑥𝑚

𝑚!

∞

𝑚=0

  + ∑
(−1)𝑚𝑥2𝑚+1

(2𝑚 + 1)!

∞

𝑚=0

 

= 1 +  𝑥 + 
𝑥2

2!
 +  

𝑥3

3!
 + ⋯ +  𝑥 −   

𝑥3

3!
  +   

𝑥5

5!
  ± ⋯ 

= 1  +   2𝑥 +  
𝑥2

2
  +   

𝑥4

4!
 +   

2𝑥5

5!
 + ⋯ 
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3.       𝑒𝑥(cos 𝑥) 

Solution: 

𝑒𝑥(cos 𝑥) =  ( ∑  
𝑥𝑚

𝑚!

∞

𝑚=0

) ( ∑
(−1)𝑚𝑥2𝑚

(2𝑚)!

∞

𝑚=0

) 

 = (1 +  𝑥 + 
𝑥2

2!
 +  

𝑥3

3!
 + ⋯ ) (1 −   

𝑥2

2!
  +  

𝑥4

4!
  ± ⋯ ) 

 = 1 −  
𝑥2

2!
  +  

𝑥4

4!
 + … +  𝑥 −

𝑥3

2!
 +

𝑥5

4!
 + ⋯ 

 

6.1.5 Idea of the power series method 

Before finding series solutions to differential equations; we need to determine when we can find series 

solutions to differential equations with nonconstant coefficients. So, let’s start with the differential 

equation, 

𝑝(𝑥)𝑦′′ + 𝑞(𝑥)𝑦′ + 𝑟(𝑥)𝑦 = 0                                                                      (5) 

To this point we’ve only dealt with constant coefficients. However, with series solutions we can now 

have nonconstant coefficient differential equations. Also, here we will be dealing only with polynomial 

coefficients. 

Now, we say that x = x0 is an ordinary point if provided both 

𝑞(𝑥)

𝑝(𝑥)
                and             

𝑟(𝑥)

𝑝(𝑥)
 

are  analytic at x = x0. That is to say that these two quantities have Taylor series around x = x0. Since, we 

are only dealing with coefficients that are polynomials so this will be equivalent to saying that 

𝑝(𝑥0) ≠ 0 

for most of the problems. 

If a point is not an ordinary point we call it a singular point. 

The basic idea to finding a series solution to a differential equation is to assume that we can write the 

solution as a power series in the form, 

𝑦(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛

∞

𝑛=0

                                                                            (6) 

and then try to determine what the an’s need to be. We will only be able to do this if the point x = x0, is 

an ordinary point. We will usually say that (6) is a series solution around x = x0. 
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Example 6.3: 

1. Find a series solution around x0 = 0 for the following differential equation. 

𝑦′′ − 𝑥𝑦 = 0 

Solution: 

In this case, 𝑝(𝑥) = 1; hence for this differential equation every point is an ordinary point.  

Assume solution: 

𝑦 = ∑ 𝑎𝑛

∞

𝑛=0

(𝑥 − 0)𝑛 = ∑ 𝑎𝑛

∞

𝑛=0

𝑥𝑛 

Then, 

𝑦′ = ∑ 𝑛

∞

𝑛=1

𝑎𝑛𝑥𝑛−1 

𝑦′′ = ∑ 𝑛

∞

𝑛=2

(𝑛 − 1)𝑎𝑛𝑥𝑛−2 

Step1: Plugging into the differential equation 

∑ 𝑛

∞

𝑛=2

(𝑛 − 1)𝑎𝑛𝑥𝑛−2 − 𝑥 ∑ 𝑎𝑛

∞

𝑛=0

𝑥𝑛 = 0 

Step 2: Get all the coefficients moved into the series. 

∑ 𝑛

∞

𝑛=2

(𝑛 − 1)𝑎𝑛𝑥𝑛−2 − ∑ 𝑎𝑛

∞

𝑛=0

𝑥𝑛+1 = 0 

Step 3: Shift the first series down by 2 and the second series up by 1 to get both of the series                      

in terms of xn 

∑(𝑛 + 2)

∞

𝑛=0

(𝑛 + 1)𝑎𝑛+2𝑥𝑛 − ∑ 𝑎𝑛−1

∞

𝑛=1

𝑥𝑛 = 0 

Step 4: Get the two series starting at the same value of n. The only way to do that for this problem is 

to strip out the n = 0 term 

(2)(1)𝑎2𝑥0 + ∑(𝑛 + 2)

∞

𝑛=1

(𝑛 + 1)𝑎𝑛+2𝑥𝑛 − ∑ 𝑎𝑛−1

∞

𝑛=1

𝑥𝑛 = 0 

2𝑎2 + ∑[(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 − 𝑎𝑛−1]𝑥𝑛

∞

𝑛=1

= 0 

Step 5: Set all the coefficients equal to zero. The n = 0 coefficient is in front of the series and the                

n = 1,2,3… are all in the series. So, setting coefficient equal to zero gives, 
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𝑛 = 0                                              2𝑎2 = 0 

𝑛 = 1, 2, 3, …                                (𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 − 𝑎𝑛−1 = 0 

Step 6: Solving the first as well as the recurrence relation gives 

𝑛 = 0                                              𝑎2 = 0 

𝑛 = 1, 2, 3, …                                𝑎𝑛+2−=
𝑎𝑛−1

(𝑛 + 2)(𝑛 + 1)
 

Step 7: Start plugging in values of n 

𝑛 = 1                                            𝑎3 =
𝑎0

(3)(2)
 

𝑛 = 2                                            𝑎4 =
𝑎1

(4)(3)
 

𝑛 = 3                                            𝑎5 =
𝑎2

(5)(4)
= 0 

𝑛 = 4                                            𝑎6 =
𝑎3

(6)(5)
=

𝑎0

(6)(5)(3)(2)
 

𝑛 = 5                                            𝑎7 =
𝑎4

(7)(6)
=

𝑎1

(7)(6)(4)(3)
 

𝑛 = 6                                            𝑎8 =
𝑎5

(8)(7)
= 0 

 

    𝑎3𝑘 =
𝑎0

(2)(3)(5)(6) ⋯ (3𝑘 − 1)(3𝑘)
               𝑘 = 1, 2, 3, ⋯ 

𝑎3𝑘+1 =
𝑎1

(3)(4)(6)(7) ⋯ (3𝑘)(3𝑘 + 1)
               𝑘 = 1, 2, 3, ⋯ 

𝑎3𝑘+2 = 0                                                                     𝑘 = 0, 1, 2, ⋯ 

Note: Every third coefficient is zero. The formulas here are somewhat unpleasant and not all that easy 

to see the first time around. These formulas will not work for k = 0. 

 

Step 8: Get the solution 

𝑦(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + ⋯ + 𝑎3𝑘𝑥3𝑘 + 𝑎3𝑘+1𝑥3𝑘+1 + ⋯ 

          = 𝑎0 + 𝑎1𝑥 +
𝑎0

6
𝑥2 +

𝑎1

12
𝑥4 + ⋯ +

𝑎0

(2)(3)(5)(6) ⋯ (3𝑘 − 1)(3𝑘)
𝑥3𝑘

+
𝑎1

(3)(4)(6)(7) ⋯ (3𝑘)(3𝑘 + 1)
𝑥3𝑘+1 + ⋯ 

Step 9: Collect up the terms that contain the same coefficient, factor the coefficient out and write the 

results as a new series 
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 𝑦(𝑥)  = 𝑎0 [1 + ∑
𝑥3𝑘

(2)(3)(5)(6) ⋯ (3𝑘 − 1)(3𝑘)

∞

𝑘=1

] + 𝑎1 [𝑥 + ∑
𝑥3𝑘+1

(3)(4)(6)(7) ⋯ (3𝑘)(3𝑘 + 1)

∞

𝑘=1

] 

Note: The series could not start at k = 0 since the general term doesn’t hold for k = 0 

 

2. Find the first four terms in each portion of the series solution around x0 = -2 for the following 

differential equation 

𝑦′′ − 𝑥𝑦 = 0 

 

Solution: 

In this case, 𝑝(𝑥) = 1; hence for this differential equation every point is an ordinary point.  

Assume solution: 

𝑦 = ∑ 𝑎𝑛

∞

𝑛=0

(𝑥 − (−2))𝑛 = ∑ 𝑎𝑛

∞

𝑛=0

(𝑥 + 2)𝑛 

Then, 

𝑦′ = ∑ 𝑛

∞

𝑛=1

𝑎𝑛(𝑥 + 2)𝑛−1 

𝑦′′ = ∑ 𝑛

∞

𝑛=2

(𝑛 − 1)𝑎𝑛(𝑥 + 2)𝑛−2 

Step 1: Plugging into the differential equation 

∑ 𝑛

∞

𝑛=2

(𝑛 − 1)𝑎𝑛(𝑥 + 2)𝑛−2 − 𝑥 ∑ 𝑎𝑛

∞

𝑛=0

(𝑥 + 2)𝑛 = 0 

Step 2: Get all the coefficients moved into the series. There is a difference between this example and 

the previous example. In this case we can’t just multiply the x into the second series since in 

order to combine with the series it must be x + 2. Therefore we will first need to modify the 

coefficient of the second series before multiplying it into the series. 

∑ 𝑛

∞

𝑛=2

(𝑛 − 1)𝑎𝑛(𝑥 + 2)𝑛−2 − (𝑥 + 2 − 2) ∑ 𝑎𝑛

∞

𝑛=0

(𝑥 + 2)𝑛 = 0 

∑ 𝑛

∞

𝑛=2

(𝑛 − 1)𝑎𝑛(𝑥 + 2)𝑛−2 − (𝑥 + 2) ∑ 𝑎𝑛

∞

𝑛=0

(𝑥 + 2)𝑛 + 2 ∑ 𝑎𝑛

∞

𝑛=0

(𝑥 + 2)𝑛 = 0 

∑ 𝑛

∞

𝑛=2

(𝑛 − 1)𝑎𝑛(𝑥 + 2)𝑛−2 − ∑ 𝑎𝑛

∞

𝑛=0

(𝑥 + 2)𝑛+1 + ∑ 2𝑎𝑛

∞

𝑛=0

(𝑥 + 2)𝑛 = 0 

Note: Now have three series to work with. 
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Step 3: Need to shift the first series down by 2 and the second series up by 1 to get common 

exponents in all the series 

∑(𝑛 + 2)

∞

𝑛=0

(𝑛 + 1)𝑎𝑛+2(𝑥 + 2)𝑛 − ∑ 𝑎𝑛−1

∞

𝑛=1

(𝑥 + 2)𝑛 + ∑ 2𝑎𝑛

∞

𝑛=0

(𝑥 + 2)𝑛 = 0 

 

Step 4: Combine the series by stripping out the n = 0 terms from both the first and third series 

2𝑎2 + ∑(𝑛 + 2)

∞

𝑛=1

(𝑛 + 1)𝑎𝑛+2(𝑥 + 2)𝑛 − ∑ 𝑎𝑛−1

∞

𝑛=1

(𝑥 + 2)𝑛 + 2𝑎0 + ∑ 2𝑎𝑛

∞

𝑛=1

(𝑥 + 2)𝑛 = 0 

2𝑎2 + 2𝑎0 + ∑[(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 − 𝑎𝑛−1 + 2𝑎𝑛](𝑥 + 2)𝑛

∞

𝑛=1

= 0 

Step 5: Set all the coefficients equal to zero. 

𝑛 = 0                                              2𝑎2 + 2𝑎0 = 0 

𝑛 = 1, 2, 3, …                                (𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 − 𝑎𝑛−1 + 2𝑎𝑛 = 0 

Step 6: Solve the first as well as the recurrence relation. In the first case there are two options, we 

can solve for a2 or we can solve for a0. Out of habit I’ll solve for a0. In the recurrence relation 

we’ll solve for the term with the largest subscript 

𝑛 = 0                                              𝑎2 = −𝑎0 

𝑛 = 1, 2, 3, …                                𝑎𝑛+2 =
𝑎𝑛−1 − 2𝑎𝑛

(𝑛 + 2)(𝑛 + 1)
 

Note 1: This example we won’t be having every third term drop out as we did in the previous 

example. 

Note 2: At this point we’ll also acknowledge that the instructions for this problem are different as 

well. We aren’t going to get a general formula for the an’s this time so we’ll have to be 

satisfied with just getting the first couple of terms for each portion of the solution. This is 

often the case for series solutions. Getting general formulas for the an’s is the exception 

rather than the rule in these kinds of problems. 

 

Step 7: Start plugging in values of n. To get the first four terms we’ll just start plugging in terms until 

we’ve got the required number of terms. Note that we will already be starting with an a0  and 

an a1 from the first two terms of the solution so all we will need are three more terms with an 

a0 in them and three more terms with an a1 in them 

𝑛 = 0                                            𝑎2 = −𝑎0 

𝑛 = 1                                            𝑎3 =
𝑎0 − 2𝑎1

(3)(2)
=

𝑎0

6
−

𝑎1

3
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𝑛 = 2                                            𝑎4 =
𝑎1 − 2𝑎2

(4)(3)
=

𝑎1 − 2(−𝑎0)

(4)(3)
=

𝑎0

6
+

𝑎1

12
 

𝑛 = 3                                            𝑎5 =
𝑎2 − 2𝑎3

(5)(4)
=

𝑎0

20
−

1

10
(

𝑎0

6
−

𝑎1

3
) = −

𝑎0

15
+

𝑎1

30
 

 

Step 8: Get the solution 

𝑦(𝑥) = 𝑎0 + 𝑎1(𝑥 + 2) + 𝑎2(𝑥 + 2)2 + 𝑎3(𝑥 + 2)3 + 𝑎4(𝑥 + 2)4 + 𝑎5(𝑥 + 2)5 + ⋯ 

          = 𝑎0 + 𝑎1(𝑥 + 2) − 𝑎0(𝑥 + 2)2 + (
𝑎0

6
−

𝑎1

3
) (𝑥 + 2)3 + (

𝑎0

6
+

𝑎1

12
) (𝑥 + 2)4

+ (−
𝑎0

15
+

𝑎1

30
) (𝑥 + 2)5 + ⋯ 

 

Step 9: Collect up the terms that contain the same coefficient, factor the coefficient out and write the 

results as a new series 

 𝑦(𝑥)  = 𝑎0 {1 − (𝑥 + 2)2 +
1

6
(𝑥 + 2)3 +

1

6
(𝑥 + 2)4 −

1

15
(𝑥 + 2)5 + ⋯ }

+ 𝑎1 {(𝑥 + 2) −
1

3
(𝑥 + 2)3 +

1

12
(𝑥 + 2)4 +

1

30
(𝑥 + 2)5 + ⋯ } 

Note: That’s the solution for this problem as far as we’re concerned. Notice that this solution looks 
nothing like the solution to the previous example. It’s the same differential equation, but 
changing x0 completely changed the solution. 

3. Determine a series solution about x0 = 0 for the following initial value problem. 

𝑦′′ − 2𝑥𝑦′ + 𝑦 = 0,        𝑦(0) = 1,        𝑦′(0) = 1 

Solution: 

Assume solution: 

𝑦 = ∑ 𝑎𝑛

∞

𝑛=0

𝑥𝑛 

Then, 

𝑦′ = ∑ 𝑛

∞

𝑛=1

𝑎𝑛𝑥𝑛−1 

𝑦′′ = ∑ 𝑛

∞

𝑛=2

(𝑛 − 1)𝑎𝑛𝑥𝑛−2 

Step 1: Plugging into the differential equation 

∑ 𝑛

∞

𝑛=2

(𝑛 − 1)𝑎𝑛𝑥𝑛−2 − 2𝑥 ∑ 𝑛𝑎𝑛

∞

𝑛=1

𝑥𝑛−1  + ∑ 𝑎𝑛

∞

𝑛=0

𝑥𝑛 = 0 
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Step 2: Get all the coefficients moved into the series. 

∑ 𝑛

∞

𝑛=2

(𝑛 − 1)𝑎𝑛𝑥𝑛−2 − ∑ 2𝑛𝑎𝑛

∞

𝑛=1

𝑥𝑛  + ∑ 𝑎𝑛

∞

𝑛=0

𝑥𝑛 = 0 

Step 3: Need to shift the first series down by 2 to get common exponents in all the series 

∑(𝑛 + 2)

∞

𝑛=0

(𝑛 + 1)𝑎𝑛+2𝑥𝑛 − ∑ 2𝑛𝑎𝑛

∞

𝑛=1

𝑥𝑛 + ∑ 𝑎𝑛

∞

𝑛=0

𝑥𝑛 = 0 

Step 4: Combine the series by stripping out the n = 0 terms from both the first and third series 

2𝑎2𝑥0 + ∑(𝑛 + 2)

∞

𝑛=1

(𝑛 + 1)𝑎𝑛+2𝑥𝑛 − ∑ 2𝑛𝑎𝑛

∞

𝑛=1

𝑥𝑛 + 𝑎0𝑥0 + ∑ 𝑎𝑛

∞

𝑛=1

𝑥𝑛 = 0 

(𝑎0 + 2𝑎2)𝑥0 + ∑[(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 − 2𝑛𝑎𝑛 + 𝑎𝑛]

∞

𝑛=1

𝑥𝑛 = 0 =  0𝑥0 + ∑[0]

∞

𝑛=0

𝑥𝑛 

Step 5: Set all the coefficients equal to zero 

𝑛 = 0                                              𝑎0 + 2𝑎2 = 0 

𝑛 = 1, 2, 3, …                                (𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 − 2𝑛𝑎𝑛 + 𝑎𝑛 = 0 

Step 6: Solve the first as well as the recurrence relation. 

𝑛 = 0                                              𝑎2 = −
𝑎0

2
 

𝑛 = 1, 2, 3, …                                 𝑎𝑛+2 =
(2𝑛 − 1)𝑎𝑛

(𝑛 + 2)(𝑛 + 1)
 

Step 7: Start plugging in values of n. 

𝑛 = 0                                            𝑎2 = −
𝑎0

2
 

𝑛 = 1                                            𝑎3 =
𝑎1

6
 

𝑛 = 2                                            𝑎4 =
3𝑎2

12
=

𝑎2

4
= −

𝑎0

8
 

𝑛 = 3                                            𝑎5 =
5𝑎3

20
=

𝑎3

4
=  

𝑎1

24
 

Note: Can choose any arbitrary constants for a0 and a1 

 

Step 8: Get the solution 

𝑦(𝑥) = ∑ 𝑎𝑛

∞

𝑛=0

𝑥𝑛 =  𝑎0 +  𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ 
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          =  𝑎0 +  𝑎1𝑥 + (−
𝑎0

2
) 𝑥2 +  

𝑎1

6
𝑥3 + (−

𝑎0

8
) 𝑥4 +

𝑎1

24
𝑥5 + ⋯ 

 

Step 9: Collect up the terms that contain the same coefficient, factor the coefficient out and write the 

results as a new series 

𝑦(𝑥) =  𝑎0  [1 −  
𝑥2

2
− 

𝑥4

8
 + ⋯ ] + 𝑎1 [ 𝑥 +  

𝑥3

6
 +

𝑥5

24
+ ⋯ ] 

 

Step 10: Applying the initial conditions gives values for a0 and a1 

𝑦(0) = 1        ⇒         𝑎0 = 1 

𝑦′(0) = 1       ⇒         𝑎1 = 1 

 

Step 11: Write out the particular solution 

𝑦(𝑥) =   [1 −  
𝑥2

2
− 

𝑥4

8
 + ⋯ ] + [ 𝑥 +  

𝑥3

6
 +

𝑥5

24
+ ⋯ ] 

 

Solutions About Singular Points 

The power series method for solving linear differential equations with variable coefficients no longer 

works when solving the differential equation about a singular point. It appears that some features of 

the solutions of such equations of the most importance for applications are largely determined by their 

behavior near their singular points. Frobenius method is usually used to solve the differential equation 

about a regular singular point. This method does not always yield two infinite series solutions. When 

only one solution is found, a certain formula can be used to get the second solution. 

 

The two differential equations 

(𝑎)           𝑦′′ + 𝑥𝑦 = 0                    (𝑏)           𝑥𝑦′′ + 𝑦 = 0                                          (7) 

are similar only in that they are both examples of simple linear second-order differential equations with 

variable coefficients. For (7a), x = 0 is an ordinary point; hence, there is no problem in finding two 

distinct power series solution centered at that point. In contrast, x = 0 is a singular point for (7b), finding 

two infinite series solutions about that point becomes more difficult task. 

 

For the homogeneous second-order linear differential equation  

𝐴(𝑥)𝑦′′ + 𝐵(𝑥)𝑦′ + 𝐶(𝑥)𝑦 = 0                                                               (8) 

The singular points are simply points where A(x) = 0 if the functions A, B, and C are polynomials having 

no common factors. 
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For example, x = 0 is the only singular point of the Bessel equation of order n, 

𝑥2𝑦′′ + 𝑥𝑦′ + (𝑥2 − 𝑛2)𝑦 = 0 

whereas the Legendre equation of order n, 

(1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑛(𝑛 + 1)𝑦 = 0 

has two singular points x = -1 and x = 1.  

 

Note: Usually, only the case in which x = 0 is a singular point of Equation (7) is considered. A 

differential equation having x = a as a singular point is easily transformed by the substitution t 

= x – a into one having a corresponding singular point at 0. 

 

Types of Singular Points 

A differential equation having a singular point at 0 ordinarily will not have power series solutions of the 

form 

𝑦(𝑥) = ∑ 𝑐𝑛𝑥𝑛 

So the straightforward method of power series fails in this case.  

 

A singular point x0 of a linear differential equation  

𝐴(𝑥)𝑦′′ + 𝐵(𝑥)𝑦′ + 𝐶(𝑥)𝑦 = 0 

is further classified as either regular or irregular. The classification depends on the functions P and Q in 

the standard form 

𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0 

 

Definition (Regular or Irregular Singular Points) 

A singular point x0 is said to be a regular singular point of the differential equation (8) if the functions 

𝑝(𝑥) = (𝑥 − 𝑥0)𝑃(𝑥)                   and                 𝑞(𝑥) = (𝑥 − 𝑥0)2𝑄(𝑥) 

are both analytic at x0. A singular point that is not regular is said to be irregular singular point of the 
equation. 

 

Quick Visual Check (Regular or Irregular Singular Points) 

If 𝑥 − 𝑥0 appears at most to the first power in the denominator of P(x) and at most to the second power 
in the denominator of Q(x), then 𝑥 − 𝑥0  is a regular singular point. 
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Example 6.4: 

Find the singular point(s) for the differential equation 

(𝑥2 − 4)2𝑦′′ + 3(𝑥 − 2)𝑦′ + 5𝑦 = 0 

Answer 

Divide the equation with 

(𝑥2 − 4)2 = (𝑥 − 2)2(𝑥 + 2)2 

and reduce the coefficients to the lowest terms, produce 

𝑃(𝑥) =
3

(𝑥 − 2)(𝑥 + 2)2
                       and                      𝑄(𝑥) =

5

(𝑥 − 2)2(𝑥 + 2)2
 

Test P(x) and Q(x) 

(i) For x = 2 to be a regular point, the factor x – 2 can appear at most to the first power in the 

denominator of P(x) and at most to the second power in the denominator of Q(x). A check of 

the denominators of P(x) and Q(x) shows that both these conditions are satisfied, so x _ 2 is a 

regular singular point. Alternatively, the same conclusion is madeby noting that both rational 

functions 

𝑝(𝑥) = (𝑥 − 2)𝑃(𝑥) =
3

(𝑥 + 2)2
            and            𝑞(𝑥) = (𝑥 − 2)2𝑄(𝑥) =

5

(𝑥 + 2)2
 

are analytic at x -2. 

 

(ii) Now since the factor x - (-2) = x + 2 appears to the second power in the denominator of P(x), we 

can conclude immediately that x = -2 is an irregular singular point of the equation. This also 

follows from the fact that 

𝑝(𝑥) = (𝑥 + 2)𝑃(𝑥) =
3

(𝑥 − 2)(𝑥 + 2)
 

is not analytic at x = -2. 

 

 

 

 

 


