Skip to main content

Tutorial 11: Fourier Series Expansion & Its Application

Tutorial Question

  1. The function f(t)=1t2f(t)=1-t^{2} is to be represented by a Fourier series expansion over the finite interval 0<t<10<t<1. Obtain a suitable

    a. full-range series expansion

    b. half-range sine series expansion

    c. half-range cosine series expansion

    Solution

    a. For full-range series expansion, P=1,L=12P=1, L=\frac{1}{2}

    a0=011t2dr=[tt33]01=23an=201(1t2)cos2nπtdt={[12nπsin2nπt(1t2)]010112nπsin2nπt(2t)dt}=2{012nπ[12nπcos2nπt(2t)]01(12nπ)×011nπcos2nπtdt}=2{2(2nπ)2cos2nπ}=1(nπ)2cos2nπ=1(nπ)2since cos2nπ=1 for integers nbn=201(1t)2sin2nπtdt=2{[12nπcos2nπt(1t2)]01+12nπ01cos2nπt(2t)dt}=2{12nπcos022nπ[[12nπsin2nπt(t)]0112nπ01sin2nπtdt]}=2{12nπ2(2nπ)3[cos2nπt]01}=2{12nπ2(2nπ)3cos2nπ+2(2nπ)3cos0}=1nπf(t)=1t2=231π2n=11n2cos2nπt+1πn=11nsin2nπt\begin{aligned}a_0&=\int_0^11-t^2dr\\&=\left[t-\frac{t^3}{3}\right]_0^1=\frac{2}{3}\\a_n&=2\int_0^1(1-t^2)\cos2n\pi tdt\\&=\left\{\left[\frac{1}{2n\pi}\sin 2n\pi t(1-t^2)\right]_0^1-\int_0^1\frac{1}{2n\pi}\sin2n\pi t(-2t)dt\right\}\\&=2\left\{0-\frac{1}{2n\pi}\left[-\frac{1}{2n\pi}\cos2n\pi t(-2t)\right]_0^1-\left(\frac{1}{2n\pi}\right)\times\int_0^1\frac{1}{n\pi}\cos2n\pi tdt\right\}\\&=2\left\{-\frac{2}{(2n\pi)^2}\cos2n\pi\right\}\\&=-\frac{1}{(n\pi)^2}\cos2n\pi\\&=-\frac{1}{(n\pi)^2}\quad\text{since }\cos2n\pi=1\text{ for integers }n\\\\b_n&=2\int_0^1(1-t)^2\sin2n\pi tdt\\&=2\left\{\left[-\frac{1}{2n\pi }\cos2n\pi t(1-t^2)\right]_0^1+\frac{1}{2n\pi}\int_0^1\cos2n\pi t(-2t)dt\right\}\\&=2\left\{\frac{1}{2n\pi}\cos0-\frac{2}{2n\pi}\left[\left[\frac{1}{2n\pi}\sin2n\pi t (t)\right]_0^1-\frac{1}{2n\pi}\int_0^1\sin2n\pi tdt\right]\right\}\\&=2\left\{\frac{1}{2n\pi}-\frac{2}{(2n\pi)^3}\left[\cos2n\pi t\right]_0^1\right\}\\&=2\left\{\frac{1}{2n\pi}-\frac{2}{(2n\pi)^3}\cos2n\pi+\frac{2}{(2n\pi)^3}\cos 0\right\}\\&=\frac{1}{n\pi}\\\\\therefore f(t)&=1-t^2=\frac{2}{3}-\frac{1}{\pi^2}\sum_{n=1}^\infty\frac{1}{n^2}\cos2n\pi t+\frac{1}{\pi}\sum_{n=1}^\infty\frac{1}{n}\sin2n\pi t\end{aligned}

    b. For half-range sine series, P=2,L=1P=2,L=1

    bn=201(1t2)sinnπtdt=2{[1nπcosnπt(1t2)]01+1nπ01cosnπt(2t)dr}=2{1nπcos02nπ[[1nπsinnπt(t)]011nπ01sinnπtdt]}=2{1nπ+2(nπ)2×(1nπ)[cosnπt]01}=2{1nπ2(nπ)3cosnπ+2(nπ)3×1}\begin{aligned}b_n&=2\int_0^1(1-t^2)\sin n\pi tdt\\&=2\left\{\left[-\frac{1}{n\pi}\cos n\pi t(1-t^2)\right]_0^1+\frac{1}{n\pi}\int_0^1\cos n\pi t(-2t)dr\right\}\\&=2\left\{\frac{1}{n\pi}\cos0-\frac{2}{n\pi}\left[\left[\frac{1}{n\pi}\sin n\pi t(t)\right]_0^1-\frac{1}{n\pi}\int_0^1\sin n\pi tdt\right]\right\}\\&=2\left\{\frac{1}{n\pi}+\frac{2}{(n\pi)^2}\times\left(-\frac{1}{n\pi}\right)\left[\cos n\pi t\right]_0^1\right\}\\&=2\left\{\frac{1}{n\pi}-\frac{2}{(n\pi)^3}\cos n\pi+\frac{2}{(n\pi)^3}\times1\right\}\end{aligned}

    From cosnπ=(1)n={1for odd n1for even n\cos n\pi=(-1)^n=\begin{cases}-1&\quad\text{for odd } n\\1&\quad\text{for even }n\end{cases}

    When nn is odd,

    bn=2[1nπ2(nπ)3(1)+2(nπ)3]=2(1nπ+4(nπ)3)\begin{aligned}b_n&=2\left[\frac{1}{n\pi}-\frac{2}{(n\pi)^3}(-1)+\frac{2}{(n\pi)^3}\right]\\&=2\left(\frac{1}{n\pi}+\frac{4}{(n\pi)^3}\right)\end{aligned}

    When nn is even,

    bn=2(1nπ2(nπ)3+2(nπ)3)=2nπb_n=2\left(\frac{1}{n\pi}-\frac{2}{(n\pi)^3}+\frac{2}{(n\pi)^3}\right)=\frac{2}{n\pi}f(t)=2πn=11nsin2nπt+2πn=1(12n14(2n1)3π2)sin(2n1)πt\therefore f(t)=\frac{2}{\pi}\sum_{n=1}^\infty \frac{1}{n}\sin2n\pi t+\frac{2}{\pi}\sum_{n=1}^\infty\left(\frac{1}{2n-1}-\frac{4}{(2n-1)^3\pi^2}\right)\sin(2n-1)\pi t

    c. Half-range cosine:

    a0=01(1t2)dt=23an=201(1t2)cosnπtdt=2{[1nπsinnπt(1t2)]011nπ01sinnπt(2t)dt}=4nπ{[tnπcosnπt]01+1nπ01cosnπtdt}=4nπ{1nπcosnπ+1(nπ)2[sinnπt]01}=4(nπ)2cosnπ=4(nπ)2(1)n=4(nπ)2(1)n+1\begin{aligned}a_0&=\int_0^1(1-t^2)dt=\frac{2}{3}\\a_n&=2\int_0^1(1-t^2)\cos n\pi tdt\\&=2\left\{\left[\frac{1}{n\pi}\sin n\pi t(1-t^2)\right]_0^1-\frac{1}{n\pi}\int_0^1\sin n\pi t(-2t)dt\right\}\\&=\frac{4}{n\pi}\left\{\left[-\frac{t}{n\pi}\cos n\pi t\right]_0^1+\frac{1}{n\pi}\int_0^1\cos n\pi tdt\right\}\\&=\frac{4}{n\pi}\left\{-\frac{1}{n\pi}\cos n\pi+\frac{1}{(n\pi)^2}\left[\sin n\pi t\right]_0^1\right\}\\&=-\frac{4}{(n\pi)^2}\cos n\pi\\&=-\frac{4}{(n\pi)^2}(-1)^n=\frac{4}{(n\pi)^2}(-1)^{n+1}\end{aligned}f(t)=1t2=23+4π2n=1(1)n+1n2cosnπt\therefore f(t)=1-t^2=\frac{2}{3}+\frac{4}{\pi^2}\sum_{n=1}^\infty\frac{(-1)^{n+1}}{n^2}\cos n\pi t
  2. Sketch the graphs of:

    a. full-range series expansion

    b. half-range sine series expansion

    c. half-range cosine series expansion

    for f(t)=1t2f(t)=1-t^{2} in Q1 for 2<t<2-2<t<2. Draw and label the period pp and the finite interval τ\tau on each graph.

    Solution

    The original function:

    a.

    p=1,τ=1p=1,\tau=1

    b.

    p=2,τ=1p=2,\tau=1

    c.

    p=2,τ=1p=2,\tau=1

  3. The temperature distribution T(x)T(x) at a distance xx, measured from one end, along a bar of length 10 inch is given by:

    T(x)=2x(10x)(0x10)T(x)=2 x(10-x) \quad(0 \leq x \leq 10)

    Express T(x)T(x) as a Fourier series expansion consisting of sine terms only.

    Solution
    T(x)=2x(10x)T(x)=n=1bnsinnπ10x\begin{aligned}T(x)&=2 x(10-x) \\T(x)&=\sum_{n=1}^\infty b_n\sin\frac{n\pi}{10}x\end{aligned}

    where

    bn=2100102x(10x)sinnπ10xdx=25010(10xx2)sinnπ10xdx\begin{aligned}b_n&=\frac{2}{10}\int_0^{10}2x(10-x)\sin\frac{n\pi}{10}xdx\\&=\frac{2}{5}\int_0^{10}(10x-x^2)\sin\frac{n\pi}{10}xdx\end{aligned}

    Consider

    010(10xsinnπ10x)dx=[10x(10nπ)cosnπ10x]010+010102nπcosnπ10xdx=103nπcosnπ+0+[102nπ×10nπsinnπ10x]010=103nπcosnπ\begin{aligned}&\int_0^{10}\left(10x\sin\frac{n\pi}{10}x\right)dx\\&=\left[10x\left(-\frac{10}{n\pi}\right)\cos\frac{n\pi}{10}x\right]_0^{10}+\int_0^{10}\frac{10^2}{n\pi}\cos\frac{n\pi}{10}xdx\\&=-\frac{10^3}{n\pi}\cos n\pi+0+\left[\frac{10^2}{n\pi}\times\frac{10}{n\pi}\sin\frac{n\pi}{10}x\right]_0^{10}\\&=-\frac{10^3}{n\pi}\cos n\pi\end{aligned}

    Consider

    010x2sinnπ10xdx=[x2(10nπ)cosnπ10x]010+01010nπ(2x)cosnπ10xdx=(103nπcosnπ+0)+[20xnπ(10nπ)sinnπ10x]010010200n2π2sinnπ10xdx=103nπcosnπ[200n2π2(10nπ)cosnπ10x]010=103nπcosnπ(2×103n3π3cosnπ+2×103n3π3)=103nπcosnπ+2×103n3π3(cosnπ1)\begin{aligned}&\int_0^{10}x^2\sin\frac{n\pi}{10}xdx\\&=\left[x^2\left(-\frac{10}{n\pi}\right)\cos\frac{n\pi}{10}x\right]_0^{10}+\int_0^{10}\frac{10}{n\pi}(2x)\cos\frac{n\pi}{10}xdx\\&=\left(-\frac{10^3}{n\pi}\cos n\pi+0\right)+\left[\frac{20x}{n\pi}\left(\frac{10}{n\pi}\right)\sin\frac{n\pi}{10}x\right]_0^{10}-\int_0^{10}\frac{200}{n^2\pi^2}\sin\frac{n\pi}{10}xdx\\&=-\frac{10^3}{n\pi}\cos n\pi-\left[\frac{200}{n^2\pi^2}\left(-\frac{10}{n\pi}\right)\cos \frac{n\pi}{10}x \right]_0^{10}\\&=-\frac{10^3}{n\pi}\cos n\pi-\left(-\frac{2\times10^3}{n^3\pi^3}\cos n\pi+\frac{2\times10^3}{n^3\pi^3}\right)\\&=-\frac{10^3}{n\pi}\cos n\pi+\frac{2\times10^3}{n^3\pi^3}(\cos n\pi-1)\end{aligned}bn=25{103nπcosnπ+103nπcosnπ2×103n3π3(cosnπ1)}=25×2×103n3π3(1cosnπ)=800n3π3(1cosnπ)\begin{aligned}b_n&=\frac{2}{5}\left\{-\frac{10^3}{n\pi}\cos n\pi+\frac{10^3}{n\pi}\cos n\pi-\frac{2\times10^3}{n^3\pi^3}(\cos n\pi-1)\right\}\\&=\frac{2}{5}\times\frac{2\times10^3}{n^3\pi^3}(1-\cos n\pi)\\&=\frac{800}{n^3\pi^3}(1-\cos n\pi)\end{aligned}

    Since cosnπ={1for n is even1for n is odd\cos n\pi=\begin{cases}1&\quad\text{for }n\text{ is even}\\-1&\quad\text{for }n\text{ is odd}\end{cases},

    bn={0for n is even1600n3π3for n is oddb_n=\begin{cases}0&\quad\text{for }n\text{ is even}\\\frac{1600}{n^3\pi^3}&\quad\text{for }n\text{ is odd}\end{cases}T(x)=n=1bnsinnπLx=n=11600π3(12n1)3sin(2n1)π10xor=n=1,3,5,...1600π31n3sinnπ10x\begin{aligned}\therefore T(x)&=\sum_{n=1}^\infty b_n\sin\frac{n\pi}{L}x\\&=\sum_{n=1}^\infty\frac{1600}{\pi^3}\left(\frac{1}{2n-1}\right)^3\sin\frac{(2n-1)\pi}{10}x\\\\\text{or}\\\\&=\sum_{n=1,3,5,...}^\infty \frac{1600}{\pi^3}\frac{1}{n^3}\sin\frac{n\pi}{10}x\end{aligned}
  4. Suppose a uniform beam of length LL is simply supported at x=0x=0 and at x=Lx=L. If the load per unit length is given by w(x)=w0xL,0<x<Lw(x)=\frac{w_{0} x}{L}, 0<x<L, then the differential equation for the deflection y(x)y(x) is

    EId4ydx4=w0xLE I \frac{d^{4} y}{d x^{4}}=\frac{w_{0} x}{L}

    where E,IE, I and w0w_{0} are constants.

    a. Expand w(x)w(x) in a half-range sine series.

    b. Find a particular solution y(x)y(x) of the differential equation.

    Solution

    a.

    bn=2L0Lw0xLsinnπLxdx=2w0L20LxsinnπLxdx=2w0L2{[LnπcosnπLx(x)]0L+Lnπ0LcosnπLxdx}=2w0L2{L2nπcosnπ}=2w0nπcosnπ=2w0nπ(1)n+1\begin{aligned}b_n&=\frac{2}{L}\int_0^L\frac{w_0x}{L}\sin\frac{n\pi}{L}xdx\\&=\frac{2w_0}{L^2}\int_0^Lx\sin\frac{n\pi}{L}xdx\\&=\frac{2w_0}{L^2}\left\{\left[-\frac{L}{n\pi}\cos\frac{n\pi}{L}x(x)\right]_0^L+\frac{L}{n\pi}\int_0^L\cos\frac{n\pi}{L}xdx\right\}\\&=\frac{2w_0}{L^2}\left\{-\frac{L^2}{n\pi}\cos n\pi\right\}\\&=-\frac{2w_0}{n\pi}\cos n\pi=\frac{2w_0}{n\pi}(-1)^{n+1}\end{aligned}

    b. From EId4ydx4=w0xLE I \frac{d^{4} y}{d x^{4}}=\frac{w_{0} x}{L},

    EId4ydx4=2w0nπ(1)n+1sinnπLxE I \frac{d^{4} y}{d x^{4}}=\frac{2w_{0}}{n\pi}(-1)^{n+1}\sin\frac{n\pi}{L}x

    Let

    EId4ydx4=2w0nπ(1)n+1sinnπLxE I \frac{d^{4} y}{d x^{4}}=\frac{2w_{0}}{n\pi}(-1)^{n+1}\sin\frac{n\pi}{L}xn=1EIn4π4L4βnsinnπLx=n=12w0nπ(1)n+1sinnπLxEIn4π4L4βn=2w0nπ(1)n+1βn=2w0L4EIπ5n5(1)n+1\begin{aligned}\therefore \sum_{n=1}^\infty EI\frac{n^4\pi^4}{L^4}\beta_n\sin\frac{n\pi}{L}x&=\sum_{n=1}^\infty\frac{2w_0}{n\pi}(-1)^{n+1}\sin\frac{n\pi}{L}x\\EI\frac{n^4\pi^4}{L^4}\beta_n&=\frac{2w_0}{n\pi}(-1)^{n+1}\\\beta_n&=\frac{2w_0L^4}{EI\pi^5n^5}(-1)^{n+1}\end{aligned}y(x)=2woL4EIπ5n=1(1)n+1n5sinnπLx\therefore y(x)=\frac{2w_oL^4}{EI\pi^5}\sum_{n=1}^\infty\frac{(-1)^{n+1}}{n^5}\sin\frac{n\pi}{L}x