a. For full-range series expansion, P=1,L=21
a0anbn∴f(t)=∫011−t2dr=[t−3t3]01=32=2∫01(1−t2)cos2nπtdt={[2nπ1sin2nπt(1−t2)]01−∫012nπ1sin2nπt(−2t)dt}=2{0−2nπ1[−2nπ1cos2nπt(−2t)]01−(2nπ1)×∫01nπ1cos2nπtdt}=2{−(2nπ)22cos2nπ}=−(nπ)21cos2nπ=−(nπ)21since cos2nπ=1 for integers n=2∫01(1−t)2sin2nπtdt=2{[−2nπ1cos2nπt(1−t2)]01+2nπ1∫01cos2nπt(−2t)dt}=2{2nπ1cos0−2nπ2[[2nπ1sin2nπt(t)]01−2nπ1∫01sin2nπtdt]}=2{2nπ1−(2nπ)32[cos2nπt]01}=2{2nπ1−(2nπ)32cos2nπ+(2nπ)32cos0}=nπ1=1−t2=32−π21n=1∑∞n21cos2nπt+π1n=1∑∞n1sin2nπtb. For half-range sine series, P=2,L=1
bn=2∫01(1−t2)sinnπtdt=2{[−nπ1cosnπt(1−t2)]01+nπ1∫01cosnπt(−2t)dr}=2{nπ1cos0−nπ2[[nπ1sinnπt(t)]01−nπ1∫01sinnπtdt]}=2{nπ1+(nπ)22×(−nπ1)[cosnπt]01}=2{nπ1−(nπ)32cosnπ+(nπ)32×1}From cosnπ=(−1)n={−11for odd nfor even n
When n is odd,
bn=2[nπ1−(nπ)32(−1)+(nπ)32]=2(nπ1+(nπ)34)When n is even,
bn=2(nπ1−(nπ)32+(nπ)32)=nπ2∴f(t)=π2n=1∑∞n1sin2nπt+π2n=1∑∞(2n−11−(2n−1)3π24)sin(2n−1)πtc. Half-range cosine:
a0an=∫01(1−t2)dt=32=2∫01(1−t2)cosnπtdt=2{[nπ1sinnπt(1−t2)]01−nπ1∫01sinnπt(−2t)dt}=nπ4{[−nπtcosnπt]01+nπ1∫01cosnπtdt}=nπ4{−nπ1cosnπ+(nπ)21[sinnπt]01}=−(nπ)24cosnπ=−(nπ)24(−1)n=(nπ)24(−1)n+1∴f(t)=1−t2=32+π24n=1∑∞n2(−1)n+1cosnπt