i.
L(7t−5)=∫0∞(7t−5)e−stdt=∫0∞7te−stdt−∫0∞5e−stdt=−s7te−st0∞−(−s7)∫0∞e−stdt+s5e−st0∞=−s27e−st0∞−s5=s27−s5ii.
L(sinhkt)=∫0∞(sinhkt)e−stdt=∫0∞(2ekt−e−kt)e−stdt=21(∫0∞ekte−stdt−∫0∞e−kte−stdt)=21(∫0∞e(k−s)tdt−∫0∞e−(k+s)tdt)=21(k−s1e(k−s)t0∞+k+s1e−(k+s)t0∞)=21(−k−s1−k+s1)=21(s−k1−s+k1)=21((s−k)(s+k)s+k−s+k)=s2−k2kiii.
L(e−tcosht)=∫0∞e−t(2et+e−t)e−stdt=21(∫0∞e−tete−stdt+∫0∞e−te−te−stdt)=21(∫0∞e−stdt+∫0∞e−(2+s)tdt)=21(−s1e−st0∞−s+21e(s+2)t0∞)=21(s1+s+21)iv.
L(tsint)=∫0∞(tsint)e−stdtLet u=t,dv=e−stsint
v=∫e−stsintdt(1+s21)∫e−stsintdtv=∫e−stsintdt=−s1e−stsint+s1∫e−stcostdt=