y2(t)y2(t)y2′(t)y2′′(t)=v(t)y1(t)=t−1v=−t−2v+t−1v′=2t−3v−2t−2v′+t−1v′′Substituting back yields,
2t2(2t−3v−2t−2v′+t−1v′′)+t(−t−2v+t−1v′)−3(t−1v)2tv′′+(−4+1)v′+(4t−1−t−1−3t−1)v[△ Ignoring the non-differentiated terms]2tv′′−3v′=0=0=0Changing variables, w=v′→w′=v′′, Thus,
2tw′−3w2tdtdw∫3w1dw31ln∣w∣ln∣w∣w=0=3w=∫2t1dt=21ln∣t∣+C=lnt23+C=Ct23And, v′=w=Ct23→v=∫Ct23dt=52Ct52+K.
Letting C=25 and K=0, v(t)=t25→y2(t)=t−1t25=t23
∴y2(t)=t23.
The y(t) is: y(t)=C1t−1+C2t23