Skip to main content

Tutorial 7: Frobenius Method

Tutorial Question

Part 1: Using method of reduction of order, find y2y_2 such that y1,y2y_1, y_2 form a basis.

  1. 2t2y+ty3y=02t^2y''+ty'-3y=0; y1(t)=t1,t0y_1(t)=t^{-1}, t\neq0

    Solution
    y2(t)=v(t)y1(t)y2(t)=t1vy2(t)=t2v+t1vy2(t)=2t3v2t2v+t1v\begin{aligned} y_2(t)&=v(t)y_1(t)\\ y_2(t)&=t^{-1}v \\ y_2'(t)&=-t^{-2}v+t^{-1}v'\\ y_2''(t)&=2t^{-3}v-2t^{-2}v'+t^{-1}v'' \end{aligned}

    Substituting back yields,

    2t2(2t3v2t2v+t1v)+t(t2v+t1v)3(t1v)=02tv+(4+1)v+(4t1t13t1)v=0[ Ignoring the non-differentiated terms]2tv3v=0\begin{aligned} 2t^2(2t^{-3}v-2t^{-2}v'+t^{-1}v'')+t(-t^{-2}v+t^{-1}v')-3(t^{-1}v)&=0 \\ 2tv''+(-4+1)v'+(4t^{-1}-t^{-1}-3t^{-1})v&=0 \\ \color{red} {\scriptsize {[\triangle \text{ Ignoring the non-differentiated terms}]}}\\ 2tv''-3v'&=0 \end{aligned}

    Changing variables, w=vw=vw=v'\rightarrow w'=v'', Thus,

    2tw3w=02tdwdt=3w13wdw=12tdt13lnw=12lnt+Clnw=lnt32+Cw=Ct32\begin{aligned} 2tw'-3w&=0\\ 2t\frac{dw}{dt}&=3w\\ \int\frac{1}{3w}dw&=\int\frac{1}{2t}dt\\ \frac{1}{3}\ln|w|&=\frac{1}{2}\ln|t|+C\\ \ln|w|&=\ln t^{\frac{3}{2}}+C\\ w&=Ct^{\frac{3}{2}} \end{aligned}

    And, v=w=Ct32v=Ct32dt=25Ct25+Kv'=w=Ct^{\frac{3}{2}} \rightarrow v=\int Ct^{\frac{3}{2}}dt=\frac{2}{5}Ct^{\frac{2}{5}}+K.

    Letting C=52C=\frac{5}{2} and K=0K=0, v(t)=t52y2(t)=t1t52=t32v(t)=t^{\frac{5}{2}}\rightarrow y_2(t)=t^{-1}t^{\frac{5}{2}}=t^{\frac{3}{2}}

    y2(t)=t32\therefore \boldsymbol{y_2(t)=t^{\frac{3}{2}}}.

    The y(t)y(t) is: y(t)=C1t1+C2t32y(t)=C_1t^{-1}+C_2t^{\frac{3}{2}}

  2. t2y(t2+2t)y+(t+2)y=0t^2y''-(t^2+2t)y'+(t+2)y=0; y1(t)=ty_1(t)=t

    Solution
    y2(t)=v(t)y1(t)y2(t)=tvy2(t)=v+tvy2(t)=v+v+tv=2v+tv\begin{aligned} y_2(t)&=v(t)y_1(t)\\ y_2(t)&=tv \\ y_2'(t)&=v+tv'\\ y_2''(t)&=v'+v'+tv''=2v'+tv'' \end{aligned}

    Substituting back yields,

    t2(2v+tv)(t2+2t)(v+tv)+(t+2)(tv)=02t2v+t3vt2vt3v2tv2t2v+t2v+2tv=0v(2t2t32t2)+v(t3)t2v+t2v2tv+2tv=0t3vt3v=0vv=0\begin{aligned} t^2(2v'+tv'')-(t^2+2t)(v+tv')+(t+2)(tv)&=0 \\ 2t^2v'+t^3v''-t^2v-t^3v'-2tv-2t^2v'+t^2v+2tv&=0 \\ v'(2t^2-t^3-2t^2)+v''(t^3)-t^2v+t^2v-2tv+2tv&=0\\ t^3v''-t^3v'&=0\\ v''-v'&=0 \end{aligned}

    A solution to the equation is v=etv'=e^t. Integrate this yield v(t)=etv(t)=e^t.

    y2(t)=tet\therefore \boldsymbol{y_2(t)=te^t}.

    The y(t)y(t) is: y(t)=C1t+C2tety(t)=C_1t+C_2te^{t}

  3. y+6y+9y=0y''+6y'+9y=0; y1(t)=e3ty_1(t)=e^{-3t}

    Solution
    y2(t)=v(t)y1(t)y2(t)=ve3ty2(t)=ve3t3e3tvy2(t)=ve3t6ve3t+9ve3t\begin{aligned} y_2(t)&=v(t)y_1(t)\\ y_2(t)&=ve^{-3t}\\ y_2'(t)&=v'e^{-3t}-3e^{-3t}v\\ y_2''(t)&=v''e^{-3t}-6v'e^{-3t}+9ve^{-3t} \end{aligned}

    Substituting back yields,

    (ve3t6ve3t+9ve3t)+6(ve3t3e3tv)+9(ve3t)=0[ Ignoring the non-differentiated terms]ve3t=0\begin{aligned} (v''e^{-3t}-6v'e^{-3t}+9ve^{-3t})+6(v'e^{-3t}-3e^{-3t}v)+9(ve^{-3t}) &= 0 \\ \color{red} {\scriptsize{[\triangle \text{ Ignoring the non-differentiated terms}]}}\\ v''e^{-3t}&=0\\ \end{aligned}

    This gives two possibilities, v=0v''=0 or e3t=0e^{-3t}=0. However, e3t=0e^{-3t}=0 only true if t=t=\infty.

    v=0ddt(dvdt)=0d(dv)=dtv=Adtv=At+B\begin{aligned} v''&=0\\ \frac{d}{dt}(\frac{dv}{dt})&=0\\ \int\int d(dv)&=\int\int dt\\ \int v&=\int Adt\\ v&=At+B \end{aligned}

    Pick AA and BB so that second linearly independent solution is obtained.

    • If A=0A=0, y2=Be3ty_2=Be^{-3t}. y1y_1 and y2y_2 are linearly dependent.

    • If B=0B=0, y2=Ate3ty_2=Ate^{-3t}. y1y_1 and y2y_2 are linearly independent. This is chosen and let A=1A=1.

    y2(t)=te3t\boldsymbol{\therefore y_2(t)=te^{-3t}}

    The y(t)y(t) is: y(t)=(C1t+C2)e3ty(t)=(C_1t+C_2)e^{-3t}

  4. (x1)yxy+y=0(x-1)y''-xy'+y=0; y1(x)=ex,x>1y_1(x)=e^x,x>1

    Solution
    y2(x)=v(x)y1(x)y2(x)=vexy2(x)=vex+vexy2(x)=vex+2vex+vex\begin{aligned} y_2(x)&=v(x)y_1(x)\\ y_2(x)&=ve^{x}\\ y_2'(x)&=v'e^{x}+ve^{x}\\ y_2''(x)&=v''e^x+2v'e^x+ve^x \end{aligned}

    Substituting back yields,

    (x1)(vex+2vex+vex)x(vex+vex)+vex=0vxex+2xvex+vxexvex2vexvexvxex+vxex+vex=0v(xexex)+v(2xex2exxex)+vxexvex+vex=0[ Ignoring the non-differentiated terms]ex[v(x1)+v(x2)]=0v(x1)+v(x2)=0\begin{aligned} (x-1)(v''e^x+2v'e^x+ve^x)-x(v'e^{x}+ve^{x})+ve^x&=0\\ v''xe^x+2xv'e^x+vxe^x-v''e^x-2v'e^x-ve^x-v'xe^x+vxe^x+ve^x&=0\\ v''(xe^x-e^x)+v'(2xe^x-2e^x-xe^x)+vxe^x-ve^x+ve^x&=0 \\ \scriptsize{[\triangle \text{ Ignoring the non-differentiated terms}]} \\ e^x[v''(x-1)+v'(x-2)]&=0\\ v''(x-1)+ v'(x-2)&=0 \end{aligned}

    Let u=vu=v' and that u=vu'=v'',

    u(x1)+u(x2)=0u(x1)=u(x2)ux1x2=ududxx1x2=uduu=x2x1dxduu=x2x1dxlnu=x11x1dxlnu=(1+1x1)dxlnu=x+lnx1+Cu=ex+lnx1+Cu=C1(x1)ex\begin{aligned} u'(x-1)+u(x-2)&=0\\ u'(x-1)&=-u(x-2)\\ u'\frac{x-1}{x-2}&=-u\\ \frac{du}{dx}\frac{x-1}{x-2}&=-u\\ \frac{du}{u}&=-\frac{x-2}{x-1}dx\\ \int\frac{du}{u}&=-\int\frac{x-2}{x-1}dx\\ \ln|u|&=-\int\frac{x-1-1}{x-1}dx\\ \ln|u|&=\int(-1+\frac{1}{x-1})dx\\ \ln|u|&=-x+\ln|x-1|+C\\ u&=e^{-x+\ln|x-1|+C}\\ u&=C_1(x-1)e^{-x} \end{aligned}v(x)=C1(x1)exdx=C1[(x1)ex+exdx]=C1[xex+exex]+C2=C1xex+C2\begin{aligned} v(x)&=C_1\int(x-1)e^{-x}dx\\ &=C_1[-(x-1)e^{-x}+\int e^{-x}dx]\\ &=C_1[-xe^{-x}+e^{-x}-e^{-x}]+C_2\\ &=C_1xe^{-x}+C_2 \end{aligned}

    LetC1=1C_1=1 and C2=0C_2=0,

    v(x)=xexv(x)=xe^{-x}

    Thus, y2(t)=v(x)y1(x)=xexexy_2(t)=v(x)y_1(x)=xe^{-x}e^{x}.

    y2(x)=x\boldsymbol{\therefore y_2(x)=x}

    The y(x)y(x) is: y(x)=C1ex+C2xy(x)=C_1e^x+C_2x

  5. xyy+4x3y=0xy''-y'+4x^3y=0; y1(x)=sinx2,x>0y_1(x)=\sin x^2, x>0.

    Solution
    y2(t)=v(t)y1(t)y2(t)=vsinx2y2(t)=vsinx2+2xvcosx2y2(t)=vsinx2+2xvcosx2+(2v+2xv)cosx24x2vsinx2=vsinx2+4xvcosx2+2vcosx24x2vsinx2\begin{aligned} y_2(t)&=v(t)y_1(t)\\ y_2(t)&=v\sin x^2\\ y_2'(t)&=v'\sin x^2 +2xv\cos x^2\\ y_2''(t)&=v''\sin x^2+2xv'\cos x^2 +(2v+2xv')\cos x^2-4x^2v\sin x^2 \\ &=v''\sin x^2+4xv'\cos x^2 +2v\cos x^2 -4x^2v\sin x^2 \end{aligned}

    Substituting back yields,

    x(vsinx2+4xvcosx2+2vcosx24x2vsinx2)vsinx22xvcosx2+4x3(vsinx2)=0xvsinx2+(4x2cosx2sinx2)v=0\begin{aligned} x(v''\sin x^2+4xv'\cos x^2+2v\cos x^2-4x^2v\sin x^2)&-\\v'\sin x^2-2xv\cos x^2+4x^3(v\sin x^2)&=0\\ xv''\sin x^2+(4x^2\cos x^2-\sin x^2)v'&=0 \end{aligned}

    Let w=vw=v' and so w=vw'=v''.

    xwsinx2+(4x2cosx2sinx2)w=0w+(4x2cosx2sinx2)wxsinx2=0dwdx=(4x2cosx2sinx2)wxsinx2dww=1xdx4xcosx2sinx2dxlnw=lnxln(sinx2)2+C=lnx(sinx2)2w=Cx(sinx2)2\begin{aligned} xw'sin x^2+(4x^2\cos x^2-\sin x^2)w&=0\\ w'+\frac{(4x^2\cos x^2-\sin x^2)w}{x\sin x^2}&=0\\ \frac{dw}{dx}&=\frac{(4x^2\cos x^2-\sin x^2)w}{x\sin x^2}\\ \frac{dw}{w}&=\int \frac{1}{x}dx -\int 4x\frac{\cos x^2}{\sin x^2}dx\\ \ln|w|&=\ln|x|-\ln|(\sin x^2)^2|+C\\ &=\ln\left|\frac{x}{(\sin x^2)^2}\right|\\ w&=C\frac{x}{(\sin x^2)^2} \end{aligned}

    Therefore,

    v(x)=w=Cx(sinx2)2v(x)=Cx(sinx2)2dx=12Ccotx2+A\begin{aligned} v'(x)&=w=C\frac{x}{(\sin x^2)^2}\\ v(x)&=\int C\frac{x}{(\sin x^2)^2}dx\\ &=-\frac{1}{2}C\cot x^2+A \end{aligned}

    Let C=2C=-2 and K=0K=0,

    v(x)=cotx2v(x)=\cot x^2

    y2(t)=cotx2sinx2=cosx2\boldsymbol{\therefore y_2(t)=\cot x^2\sin x^2=\cos x^2}

    The y(t)y(t) is: y(t)=C1sinx2+C2cosx2y(t)=C_1\sin x^2+C_2\cos x^2

Part 2: Discuss whether two Frobenius series solutions exist or do not exist for the following equations.

  1. 2x2y+x(x+1)y(cosx)y=02x^2y''+x(x+1)y'-(\cos x)y=0

    Solution
    2x2y+x(x+1)y(cosx)y=0x2y+(x+1)xy2cosx2y=0\begin{aligned} 2x^2y''+x(x+1)y'-(\cos x)y&=0\\ x^2y''+\frac{(x+1)xy'}{2}-\frac{\cos x}{2}y&=0\\ \end{aligned}

    p(x)=x+12p(0)=12p(x)=\frac{x+1}{2} \Rightarrow p(0)=\frac{1}{2}

    q(x)=cosx2q(0)=12q(x)=\frac{-\cos x}{2} \Rightarrow q(0)=-\frac{1}{2}

    Substituting rr to find r1r_1 and r2r_2.

    r2+(p(0)1)r+q(0)=2r2r1=0r^2+(p(0)-1)r+q(0)=2r^2-r-1=0

    r1=1,r2=12\Rightarrow r_1=1, r_2=-\frac{1}{2}.

    r1r2=1(12)=32  not a zero or positive integer\therefore r_1-r_2=1-(-\frac{1}{2})=\frac{3}{2} \text{ }\triangleright \text{ not a zero or positive integer}.

    Two Frobenius series solutions exist.

  2. x4y(x2sinx)y+2(1cosx)y=0x^4y''-(x^2\sin x)y'+2(1-\cos x)y=0

    Solution
    x4y(x2sinx)y+2(1cosx)y=0x2ysinxxxy+21cosxx2y=0\begin{aligned} x^4y''-(x^2\sin x)y'+2(1-\cos x)y&=0\\ x^2y''-\frac{\sin x}{x}xy'+2\frac{1-\cos x}{x^2}y&=0\\ \end{aligned}

    p(x)=sinxxp(0)=1p(x)=\frac{-\sin x}{x} \Rightarrow p(0)=-1

    q(x)=2(1cosx)x2q(0)=1q(x)=\frac{2(1-\cos x)}{x^2} \Rightarrow q(0)=1

    Substituting rr to find r1r_1 and r2r_2.

    r2+(p(0)1)r+q(0)=r22r1=0r^2+(p(0)-1)r+q(0)=r^2-2r-1=0

    r1=1,r2=1\Rightarrow r_1=1, r_2=1.

    One Frobenius series solution exists since r1=r2r_1=r_2.

Part 3: Apply Frobenius Method to find the basis of solutions of the following differential equations.

  1. 2xy+y+y=02xy''+y'+y=0

    Solution

    x=0x=0 is a regular singular solution.

    Assuming the solution is y=k=0akxk+ry=\sum \limits_{k=0}^\infty a_kx^{k+r}.

    y=k=0akxk+ry=k=0(k+r)akxk+r1y=k=0(k+r)(k+r1)akxk+r2\begin{aligned} y&=\sum \limits_{k=0}^\infty a_kx^{k+r}\\ y'&=\sum \limits_{k=0}^\infty (k+r)a_kx^{k+r-1}\\ y''&=\sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kx^{k+r-2} \end{aligned}

    Substituting back yields,

    2xk=0(k+r)(k+r1)akxk+r2+k=0(k+r)akxk+r1+k=0akxk+r=02k=0(k+r)(k+r1)akxk+r1+k=0(k+r)akxk+r1+k=0akxk+r=0 [ Removing the x from the first term]2k=0(k+r)(k+r1)akxk1+k=0(k+r)akxk1+k=0akxk=0[ Diving out xr]2n=1(n+r+1)(n+r)an+1xn+n=1(n+r+1)an+1xn+n=0anxn=0[ Substituting k with n (change limits)]2r(r1)a0x1+2n=0(n+r+1)(n+r)an+1xn+ra0x1+n=0(n+r+1)an+1xn+n=0anxn=0[ Taking out all terms to make sure n=0]\begin{aligned} 2x\sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kx^{k+r-2}+\sum \limits_{k=0}^\infty (k+r)a_kx^{k+r-1}+\sum \limits_{k=0}^\infty a_kx^{k+r}&=0\\ 2\sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kx^{k+r-1}+\sum \limits_{k=0}^\infty (k+r)a_kx^{k+r-1}+\sum \limits_{k=0}^\infty a_kx^{k+r}&=0 \text{ }\\ \color{red} {\scriptsize {[\triangle { \text{ Removing the } x \text{ from the first term}}}]}\\ 2\sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kx^{k-1}+\sum \limits_{k=0}^\infty (k+r)a_kx^{k-1}+\sum \limits_{k=0}^\infty a_kx^{k}&=0 \\ \color{red}{\scriptsize{[\triangle { \text{ Diving out } x^r}}]} \\ 2\sum \limits_{n=-1}^\infty (n+r+1)(n+r)a_{n+1}x^n+\sum \limits_{n=-1}^\infty (n+r+1)a_{n+1}x^n+\sum \limits_{n=0}^\infty a_nx^n&=0 \\ \color{red} {\scriptsize{[\triangle { \text{ Substituting } k \text{ with }n \text{ (change limits)}}]}} \\ 2r(r-1)a_0x^{-1}+2\sum \limits_{n=0}^\infty (n+r+1)(n+r)a_{n+1}x^n&+\\ ra_0x^{-1}+\sum \limits_{n=0}^\infty (n+r+1)a_{n+1}x^n+\sum \limits_{n=0}^\infty a_nx^n&=0 \\ \color{red} {\scriptsize{[\triangle { \text{ Taking out all terms to make sure } n=0}]}} \\ \end{aligned}

    For a0a_0, [2(r2r)+r]a0=0[2(r^2-r)+r]a_0=0.

    Since a00r(2r1)=0r2=0,r1=12a_0\neq0\Rightarrow r(2r-1)=0\Rightarrow r_2=0, r_1=\frac{1}{2}

    The recurrence relation is then,

    [2(n+r+1)(n+r)+(n+r+1)]an+1+an=0(n+r+1)(2n+2r+1)an+1=anan+1=an(n+r+1)(2n+2r+1),n=0,1,2,...\begin{aligned} [2(n+r+1)(n+r)+(n+r+1)]a_{n+1}+a_n&=0\\ (n+r+1)(2n+2r+1)a_{n+1}&=-a_n\\ a_{n+1}&=\frac{-a_n}{(n+r+1)(2n+2r+1)}, n=0,1,2,... \end{aligned}

    For r=12r=\frac{1}{2},

    an+1=an(n+32)(2n+2)n=0,a1=a0(32)(2)=a03n=1,a2=a1(52)(4)=a0103n=2,a3=a2(72)(6)=a021103y1(x)=k=0akxk+r=a0x12+a1x32+...y1(x)=a0x12a03x32+a0103x52a021103x72+...y1(x)=a0x12[1x3+x2103x321103+...]\begin{aligned} a_{n+1}&=-\frac{a_n}{(n+\frac{3}{2})(2n+2)} \\ \\ n&=0, a_1=-\frac{a_0}{(\frac{3}{2})(2)}=-\frac{a_0}{3}\\ n&=1, a_2=\frac{a_1}{(\frac{5}{2})(4)}=\frac{a_0}{10\cdot3}\\ n&=2, a_3=-\frac{a_2}{(\frac{7}{2})(6)}=-\frac{a_0}{21\cdot10\cdot3}\\ \\ y_1(x)&=\sum\limits_{k=0}^\infty a_kx^{k+r}=a_0x^{\frac{1}{2}}+a_1x^{\frac{3}{2}}+... \\ y_1(x)&=a_0x^{\frac{1}{2}}-\frac{a_0}{3}x^{\frac{3}{2}}+\frac{a_0}{10\cdot3}x^{\frac{5}{2}}-\frac{a_0}{21\cdot10\cdot3}x^{\frac{7}{2}}+...\\ \boldsymbol{y_1(x)}&=\boldsymbol{a_0x^{\frac{1}{2}}\left[1-\frac{x}{3}+\frac{x^2}{10\cdot3}-\frac{x^3}{21\cdot10\cdot3}+...\right]} \end{aligned}

    For r=0r=0,

    an+1=an(n+1)(2n+1)n=0,a1=a0(1)(1)=a0n=1,a2=a1(2)(3)=a06n=2,a3=a2(3)(5)=a0156y2(x)=k=0akxk=a0x0+a1x1+...y2(x)=a0a0x+a06x2a0156x3+...y2(x)=a0[1x+x26x3156+...]\begin{aligned} a_{n+1}&=-\frac{a_n}{(n+1)(2n+1)} \\ \\ n&=0, a_1=-\frac{a_0}{(1)(1)}=-a_0\\ n&=1, a_2=\frac{a_1}{(2)(3)}=\frac{a_0}{6}\\ n&=2, a_3=-\frac{a_2}{(3)(5)}=-\frac{a_0}{15\cdot6}\\ \\ y_2(x)&=\sum\limits_{k=0}^\infty a_kx^k=a_0x^0+a_1x^1+... \\ y_2(x)&=a_0-a_0x+\frac{a_0}{6}x^2-\frac{a_0}{15\cdot6}x^3+...\\ \boldsymbol{y_2(x)}&=\boldsymbol{a_0\left[1-x+\frac{x^2}{6}-\frac{x^3}{15\cdot6}+...\right]} \end{aligned}
  2. xy+2y+xy=0xy''+2y'+xy=0

    Solution

    x=0x=0 is a regular singular solution.

    Assuming the solution is y=k=0akxk+ry=\sum \limits_{k=0}^\infty a_kx^{k+r}.

    y=k=0akxk+ry=k=0(k+r)akxk+r1y=k=0(k+r)(k+r1)akxk+r2\begin{aligned} y&=\sum \limits_{k=0}^\infty a_kx^{k+r}\\ y'&=\sum \limits_{k=0}^\infty (k+r)a_kx^{k+r-1}\\ y''&=\sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kx^{k+r-2} \end{aligned}

    Substituting back yields,

    xk=0(k+r)(k+r1)akxk+r2+2k=0(k+r)akxk+r1+xk=0akxk+r=0k=0(k+r)(k+r1)akxk+r1+2k=0(k+r)akxk+r1+k=0akxk+r+1=0[ Removing the x from the first term]k=0(k+r)(k+r1)akxk1+2k=0(k+r)akxk1+k=0akxk+1=0[ Diving out xr]n=1(n+r+1)(n+r)an+1xn+2n=1(n+r+1)an+1xn+n=1an1xn=0[ Substituting k with n (change limits)]r(r1)a0x1+r(r+1)a1x0+n=1(n+r+1)(n+r)an+1xn+2ra0x1+2(r+1)a1x0+2n=1(n+r+1)an+1xn+n=1an1xn=0(r2r+2r)a0x1+(r2+r+r+1)a1x0+n=1[((n+r+1)(n+r)+2(n+r+1))an+1+an1]xn=0[ Taking out all terms to make sure n=0]\begin{aligned} x\sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kx^{k+r-2}+2\sum \limits_{k=0}^\infty (k+r)a_kx^{k+r-1}+x\sum \limits_{k=0}^\infty a_kx^{k+r}&=0\\ \sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kx^{k+r-1}+2\sum \limits_{k=0}^\infty (k+r)a_kx^{k+r-1}+\sum \limits_{k=0}^\infty a_kx^{k+r+1}&=0 \\ \color{red}{\scriptsize{[\triangle { \text{ Removing the } x \text{ from the first term]}}}}\\ \sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kx^{k-1}+2\sum \limits_{k=0}^\infty (k+r)a_kx^{k-1}+\sum \limits_{k=0}^\infty a_kx^{k+1}&=0 \\ \color{red}{\scriptsize{[\triangle {\text{ Diving out } x^r]}}} \\ \sum \limits_{n=-1}^\infty (n+r+1)(n+r)a_{n+1}x^n+2\sum \limits_{n=-1}^\infty (n+r+1)a_{n+1}x^n+\sum \limits_{n=1}^\infty a_{n-1}x^n&=0 \\ \color{red}{\scriptsize{[\triangle { \text{ Substituting } k \text{ with }n \text{ (change limits)}}]}} \\ r(r-1)a_0x^{-1}+r(r+1)a_1x^0+\sum \limits_{n=1}^\infty (n+r+1)(n+r)a_{n+1}x^n&+\\ 2ra_0x^{-1}+2(r+1)a_1x^0+2\sum \limits_{n=1}^\infty (n+r+1)a_{n+1}x^n+\sum \limits_{n=1}^\infty a_{n-1}x^n&=0\\ (r^2-r+2r)a_0x^{-1}+(r^2+r+r+1)a_1x^0&+\\ \sum\limits_{n=1}^\infty \left[((n+r+1)(n+r)+2(n+r+1))a_{n+1}+a_{n-1}\right]x^n&=0 \\ \color{red}{\scriptsize{[\triangle { \text{ Taking out all terms to make sure } n=0}]}} \\ \end{aligned}

    For a0a_0, (r2r+2r)a0=0(r^2-r+2r)a_0=0.

    Since a00r2+r=0r1=0,r2=1a_0\neq0\Rightarrow r^2+r=0\Rightarrow r_1=0, r_2=-1

    The recurrence relation is then,

    [(n+r+1)(n+r)+2(n+r+1)]an+1+an1=0(n+r+1)(n+r+2)an+1=an1an+1=an1(n+r+1)(n+r+2),n=0,1,2,...\begin{aligned} [(n+r+1)(n+r)+2(n+r+1)]a_{n+1}+a_{n-1}&=0\\ (n+r+1)(n+r+2)a_{n+1}&=-a_{n-1}\\ a_{n+1}&=\frac{-a_{n-1}}{(n+r+1)(n+r+2)}, n=0,1,2,... \end{aligned}

    For r=0r=0,

    an+1=an1(n+1)(n+2)n=0,[(r2+r)+2(r+1)]a1=0a1=0n=1,a2=a032=a03!n=2,a3=a112=0n=3,a4=a2203!=a05!n=4,a5=a330=0y1(x)=k=0akxk+r=a0x0+a1x1+...y1(x)=a0+0a03!x2+0+a05!+...y1(x)=a0(113!x2+15!x4+...)\begin{aligned} a_{n+1}&=-\frac{a_{n-1}}{(n+1)(n+2)} \\ \\ n&=0, [(r^2+r)+2(r+1)]a_1=0\Rightarrow a_1=0\\ n&=1, a_2=\frac{-a_0}{3\cdot2}=\frac{-a_0}{3!}\\ n&=2, a_3=-\frac{-a_1}{12}=0\\ n&=3, a_4=\frac{-a_2}{20\cdot3!}=\frac{-a_0}{5!}\\ n&=4, a_5=-\frac{-a_3}{30}=0\\ \\ y_1(x)&=\sum\limits_{k=0}^\infty a_kx^{k+r}=a_0x^0+a_1x^1+... \\ y_1(x)&=a_0+0-\frac{a_0}{3!}x^2+0+\frac{a_0}{5!}+...\\ \boldsymbol{y_1(x)}&=\boldsymbol{a_0(1-\frac{1}{3!}x^2+\frac{1}{5!}x^4+...)} \end{aligned}

    For r=1r=-1,

    an+1=an1n(n+1),n=1,2,3,...n=0,[(r2+r)+2(r+1)]a1=00a1=0 a10(unknown)n=1,a2=a012=a02!n=2,a3=a123=0n=3,a4=a234=a04!n=4,a5=a345=a15!y2(x)=k=0akxk+r=a0x1+a1x0+a2x1+...y2(x)=1xa0+a1a02!xa13!x2+...y2(x)=a0(1x12!x+14!x3+...)+a1(1x23!+x45!+...)y2(x)=a01xcosx+a11xsinx\begin{aligned} a_{n+1}&=\frac{-a_{n-1}}{n(n+1)}, n=1,2,3,...\\ \\ n&=0, [(r^2+r)+2(r+1)]a_1=0 \Rightarrow 0\cdot a_1=0\text{ }\triangleright a_1\neq0\text{(unknown)}\\ n&=1, a_2=\frac{-a_0}{1\cdot2}=\frac{-a_0}{2!}\\ n&=2, a_3=-\frac{-a_1}{2\cdot3}=0\\ n&=3, a_4=\frac{-a_2}{3\cdot4}=\frac{a_0}{4!}\\ n&=4, a_5=-\frac{-a_3}{4\cdot5}=\frac{a_1}{5!}\\ \\ y_2(x)&=\sum\limits_{k=0}^\infty a_kx^{k+r}=a_0x^{-1}+a_1x^0+a_2x^1+... \\ y_2(x)&=\frac{1}{x}a_0+a_1-\frac{a_0}{2!}x-\frac{a_1}{3!}x^2+...\\ y_2(x)&=a_0(\frac{1}{x}-\frac{1}{2!}x+\frac{1}{4!}x^3+...)+a_1(1-\frac{x^2}{3!}+\frac{x^4}{5!}+...)\\ \boldsymbol{y_2(x)}&=\boldsymbol{a_0\frac{1}{x}\cos x+a_1\frac{1}{x}\sin x} \end{aligned}
  3. xy+(12x)y+(x1)y=0xy''+(1-2x)y'+(x-1)y=0

    Solution

    x=0x=0 is a regular singular solution.

    Assuming the solution is y=k=0akxk+ry=\sum \limits_{k=0}^\infty a_kx^{k+r}.

    y=k=0akxk+ry=k=0(k+r)akxk+r1y=k=0(k+r)(k+r1)akxk+r2\begin{aligned} y&=\sum \limits_{k=0}^\infty a_kx^{k+r}\\ y'&=\sum \limits_{k=0}^\infty (k+r)a_kx^{k+r-1}\\ y''&=\sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kx^{k+r-2} \end{aligned}

    Substituting back yields,

    xk=0(k+r)(k+r1)akxk+r2+(12x)k=0(k+r)akxk+r1+(x1)k=0akxk+r=0k=0(k+r)(k+r1)akxk+r1+k=0(k+r)akxk+r12k=0(k+r)akxk+r1+(x1)k=0akxk+r=0[ Removing the x from the first term]k=0(k+r)(k+r1)akxk1+k=0(k+r)akxk12k=0(k+r)akxk1+k=0akxk+1k=0akxk=0[ Diving out xr]n=1(n+r+1)(n+r)an+1xn+2n=1(n+r+1)an+1xn+n=1an1xn=0[ Substituting k with n (change limits)]r(r1)a0x1+r(r+1)a1x0+n=1(n+r+1)(n+r)an+1xn+ra0x1+(r+1)a1x0+n=1(n+r+1)an+1xn2ra0x02n=1(n+r)anxn+n=1an1xna0x0n=1anxn=0\begin{aligned} x\sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kx^{k+r-2}+(1-2x)\sum \limits_{k=0}^\infty (k+r)a_kx^{k+r-1}&+\\ (x-1)\sum \limits_{k=0}^\infty a_kx^{k+r}&=0\\ \sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kx^{k+r-1}+\sum \limits_{k=0}^\infty (k+r) a_k x^{k+r-1}&-\\ 2\sum \limits_{k=0}^\infty (k+r)a_kx^{k+r-1}+(x-1)\sum \limits_{k=0}^\infty a_kx^{k+r}&=0 \\ \color{red}{\scriptsize{[\triangle { \text{ Removing the } x \text{ from the first term]}}}}\\ \sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kx^{k-1}+\sum\limits_{k=0}^\infty (k+r)a_kx^{k-1}&-\\ 2\sum \limits_{k=0}^\infty (k+r)a_kx^{k-1}+\sum \limits_{k=0}^\infty a_kx^{k+1}-\sum\limits_{k=0}^\infty a_kx^k&=0 \\ \color{red}{\scriptsize{[\triangle {\text{ Diving out } x^r]}}} \\ \sum \limits_{n=-1}^\infty (n+r+1)(n+r)a_{n+1}x^n+2\sum \limits_{n=-1}^\infty (n+r+1)a_{n+1}x^n+\sum \limits_{n=1}^\infty a_{n-1}x^n&=0 \\ \color{red}{\scriptsize{[\triangle { \text{ Substituting } k \text{ with }n \text{ (change limits)}}]}} \\ r(r-1)a_0x^{-1}+r(r+1)a_1x^0+\sum \limits_{n=1}^\infty (n+r+1)(n+r)a_{n+1}x^n&+\\ ra_0x^{-1}+(r+1)a_1x^0+\sum \limits_{n=1}^\infty (n+r+1)a_{n+1}x^n-2ra_0x^0&-\\ 2\sum \limits_{n=1}^\infty (n+r)a_{n}x^n+\sum\limits_{n=1}^\infty a_{n-1}x^n-a_0x^0-\sum\limits_{n=1}^\infty a_nx^n&=0\\ \end{aligned}

    For a0a_0, [(r2r)+r]a0=0[(r^2-r)+r]a_0=0.

    Collecting the non-summation terms,

    ([(r2+r)+(r+1)]a1+(2r1)a0)=0(r2+2r+1)a1(2r+1)a0=0will be used to find a0,a1(Eq 1)\begin{aligned} ([(r^2+r)+(r+1)]a_1+(-2r-1)a_0)&=0\\ (r^2+2r+1)a_1-(2r+1)a_0&=0 \triangleright \text{will be used to find }a_0, a_1 \text{(Eq 1)} \end{aligned}

    Since a00r2=0r1=0,r2=0a_0\neq0\Rightarrow r^2=0\Rightarrow r_1=0, r_2=0

    The recurrence relation is then,

    ([(n+r)(n+r+1)+(n+r+1)]an+1+an1[2(n+r)+1]an)=0([(n+r+1)(n+r+1)]an+1+an1[2(n+r+1)an])=0an+1=[2(n+r)+1]anan1(n+r+1)2,n=1,2,3...\begin{aligned} ([(n+r)(n+r+1)+(n+r+1)]a_{n+1}+a_{n-1}-[2(n+r)+1]a_n)&=0\\ ([(n+r+1)(n+r+1)]a_{n+1}+a_{n-1}-[2(n+r+1)a_n])&=0\\ a_{n+1}=\frac{[2(n+r)+1]a_n-a_{n-1}}{(n+r+1)^2}, n=1,2,3... & \end{aligned}

    For r=0r=0,

    an+1=(2n+1)anan1(n+1)2,n=1,2,3,...From Eq(1),(0+2(0)+1)a1(2(0)+1)a0=0a1=a0n=1,a2=3a1a022=3a0a022=a02n=2,a3=5a2a132=5(a02)a132=a03!n=3,a4=7a3a242=7(a03!)a0242=a04!y1(x)=k=0akxk+r=a0x0+a1x1+...y1(x)=a0+a0x+a02!x2+a03!x3<u>...y1(x)=a0(1+x+12!x2+13!x4+...)y1(x)=a0ex\begin{aligned} a_{n+1}&=\frac{(2n+1)a_n-a_{n-1}}{(n+1)^2}, n=1,2,3,... \\ \\ &\text{From Eq(1)}, (0+2(0)+1)a_1-(2(0)+1)a_0=0 \Rightarrow a_1=a_0\\\\ n&=1, a_2=\frac{3a_1-a_0}{2^2}=\frac{3a_0-a_0}{2^2}=\frac{a_0}{2}\\ n&=2, a_3=-\frac{5a_2-a_1}{3^2}=\frac{5(\frac{a_0}{2})-a_1}{3^2}=\frac{a_0}{3!}\\ n&=3, a_4=\frac{7a_3-a_2}{4^2}=\frac{7(\frac{a_0}{3!})-\frac{a_0}{2}}{4^2}=\frac{a_0}{4!}\\ \\ y_1(x)&=\sum\limits_{k=0}^\infty a_kx^{k+r}=a_0x^0+a_1x^1+... \\ y_1(x)&=a_0+a_0x+\frac{a_0}{2!}x^2+\frac{a_0}{3!}x^3<u>...\\ y_1(x)&=a_0(1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^4+...)\\ \boldsymbol{y_1(x)}&=\boldsymbol{a_0e^x} \end{aligned}

    For the second r=0r=0, using reduction of order.

    Knowing y1=exy_1=e^x,

    y2=vexy2=vex+vexy2=vex+2vex+vex\begin{aligned} y_2&=ve^x\\ y_2'&=ve^x+v'e^x\\ y_2''&=ve^x+2v'e^x+v''e^x \end{aligned}

    Substituting into main equation,

    x(v+2v+v)+(12x)(vex+vex)+(x1)vex=0x(v+2v+v)+(12x)(v+v)+(x1)v=0[ Dividing out ex]xv+2xv+xv+v2xv+v2xv+xvv=0v+xv=0xv=vvv=1xvvdv=1xdxlnv=lnx=lnx1v=x1vdv=1xdxv=lnx\begin{aligned} x(v+2v'+v'')+(1-2x)(ve^x+v'e^x)+(x-1)ve^x&=0\\ x(v+2v'+v'')+(1-2x)(v+v')+(x-1)v&=0 \\ \color{red}{\scriptsize{\triangle[\text{ Dividing out }e^x]}}\\ xv+2xv'+xv''+v-2xv'+v'-2xv+xv-v&=0\\ v'+xv''&=0\\ xv''&=-v'\\ \frac{v''}{v'}&=-\frac{1}{x}\\ \int\frac{v''}{v'}dv&=-\int\frac{1}{x}dx\\ \ln v'&=-\ln x=\ln x^{-1}\\ v'&=x^{-1}\\ \int v' dv&=\int \frac{1}{x}dx\\ v&=\ln x \end{aligned}

    y2(x)=(lnx)ex\therefore \boldsymbol{y_2(x)=(\ln x)e^x}

  4. 2ty+(1+t)y+y=02ty''+(1+t)y'+y=0

    Solution

    x=0x=0 is a regular singular solution.

    Assuming the solution is y=k=0akxk+ry=\sum \limits_{k=0}^\infty a_kx^{k+r}.

    y=k=0akxk+ry=k=0(k+r)akxk+r1y=k=0(k+r)(k+r1)akxk+r2\begin{aligned} y&=\sum \limits_{k=0}^\infty a_kx^{k+r}\\ y'&=\sum \limits_{k=0}^\infty (k+r)a_kx^{k+r-1}\\ y''&=\sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kx^{k+r-2} \end{aligned}

    Substituting back yields,

    2tk=0(k+r)(k+r1)aktk+r2+(1t)k=0(k+r)aktk+r1+k=0aktk+r=02k=0(k+r)(k+r1)aktk+r1+k=0(k+r)aktk+r1+k=0(k+r)aktk+r+k=0aktk+r=0[ Removing the t from the first term]2k=0(k+r)(k+r1)aktk1+k=0(k+r)aktk1+k=0(k+r)aktk+k=0aktk=0[ Diving out tr]2n=1(n+r+1)(n+r)an+1tn+n=1(n+r+1)an+1tn+n=0(n+r)antn+n=0antn=0[ Substituting k with n (change limits)]2r(r1)a0t1+2n=0(n+r+1)(n+r)an+1tn+ra0t1+n=0(n+r+1)an+1tn+n=0(n+r)antn+n=0antn=0\begin{aligned} 2t\sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kt^{k+r-2}+(1-t)\sum \limits_{k=0}^\infty (k+r)a_kt^{k+r-1}&+\\ \sum \limits_{k=0}^\infty a_kt^{k+r}&=0\\ 2\sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kt^{k+r-1}+\sum \limits_{k=0}^\infty (k+r) a_k t^{k+r-1}&+\\ \sum \limits_{k=0}^\infty (k+r)a_kt^{k+r}+\sum \limits_{k=0}^\infty a_kt^{k+r}&=0 \\ \color{red}{\scriptsize{[\triangle { \text{ Removing the } t \text{ from the first term]}}}}\\ 2\sum \limits_{k=0}^\infty (k+r)(k+r-1)a_kt^{k-1}+\sum\limits_{k=0}^\infty (k+r)a_kt^{k-1}&+\\ \sum \limits_{k=0}^\infty (k+r)a_kt^{k}+\sum \limits_{k=0}^\infty a_kt^{k}&=0 \\ \color{red}{\scriptsize{[\triangle {\text{ Diving out } t^r]}}} \\ 2\sum \limits_{n=-1}^\infty (n+r+1)(n+r)a_{n+1}t^n+\sum \limits_{n=-1}^\infty (n+r+1)a_{n+1}t^n&+\\ \sum \limits_{n=0}^\infty (n+r)a_{n}t^n+\sum\limits_{n=0}^\infty a_nt^n&=0 \\ \color{red}{\scriptsize{[\triangle { \text{ Substituting } k \text{ with }n \text{ (change limits)}}]}} \\ 2r(r-1)a_0t^{-1}+2\sum \limits_{n=0}^\infty (n+r+1)(n+r)a_{n+1}t^n&+\\ ra_0t^{-1}+\sum \limits_{n=0}^\infty (n+r+1)a_{n+1}t^n+\sum \limits_{n=0}^\infty (n+r)a_{n}t^n+\sum\limits_{n=0}^\infty a_{n}t^n&=0\\ \end{aligned}

    For a0a_0, [2(r2r)+r]a0=0[2(r^2-r)+r]a_0=0.

    Since a002r2r=0r1=12,r2=0a_0\neq0\Rightarrow 2r^2-r=0\Rightarrow r_1=\frac{1}{2}, r_2=0

    The recurrence relation is then,

    [2(n+r)(n+r+1)+(n+r+1)]an+1+[(n+r)+1]an=0(n+r+1)(2n+2r+1)an+1=[(n+r)+1]anan+1=[(n+r)+1]an(n+r+1)(2n+2r+1),n=0,1,2,...\begin{aligned} [2(n+r)(n+r+1)+(n+r+1)]a_{n+1}+[(n+r)+1]a_n&=0\\ (n+r+1)(2n+2r+1)a_{n+1}&=-[(n+r)+1]a_n\\ a_{n+1}&=\frac{-[(n+r)+1]a_n} {(n+r+1)(2n+2r+1)}, n=0,1,2,... \end{aligned}

    For r=12r=-\frac{1}{2},

    an+1=an2n+2,n=0,1,2,3,...n=0,a1=a02n=1,a2=a122=a0222!n=2,a3=a223=a0233!n=3,a4=a324=a0244!y1(t)=k=0aktk+r=a0t12+a1t32+...y1(t)=a0t12a02!t32+a0222!t52a0233!t72+...y1(t)=a0t12(112!t+1222!t21233!t3+...)\begin{aligned} a_{n+1}&=\frac{a_n}{2n+2}, n=0,1,2,3,... \\ \\ n&=0, a_1=-\frac{a_0}{2}\\ n&=1, a_2=-\frac{a_1}{2\cdot2}=\frac{a_0}{2^2\cdot 2!}\\ n&=2, a_3=-\frac{a_2}{2\cdot3}=-\frac{a_0}{2^3\cdot3!}\\ n&=3, a_4=-\frac{a_3}{2\cdot4}=\frac{a_0}{2^4\cdot4!}\\ \\ y_1(t)&=\sum\limits_{k=0}^\infty a_kt^{k+r}=a_0t^{\frac{1}{2}}+a_1t^{\frac{3}{2}}+... \\ y_1(t)&=a_0t^{\frac{1}{2}}-\frac{a_0}{2!}t^{\frac{3}{2}}+\frac{a_0}{2^2\cdot2!}t^{\frac{5}{2}}-\frac{a_0}{2^3\cdot3!}t^{\frac{7}{2}}+...\\ \boldsymbol{y_1(t)}&=\boldsymbol{a_0t^{\frac{1}{2}} \left(1-\frac{1}{2!}t+\frac{1}{2^2\cdot2!}t^2-\frac{1}{2^3\cdot3!}t^3+... \right)} \end{aligned}

    For r=0r=0,

    an+1=an2n+1,n=0,1,2,3,...n=0,a1=a0n=1,a2=a13=a03n=2,a3=a25=a053n=3,a4=a37=a0753y2(t)=k=0aktk+r=a0+a1t+a2t2+a3t3+...y2(t)=a0a0t+a03t2a053t3+...y2(t)=a0(1t+13t2153t3+1753t4...)\begin{aligned} a_{n+1}&=-\frac{a_n}{2n+1}, n=0,1,2,3,... \\ \\ n&=0, a_1=-a_0\\ n&=1, a_2=-\frac{a_1}{3}=\frac{a_0}{3}\\ n&=2, a_3=-\frac{a_2}{5}=-\frac{a_0}{5\cdot3}\\ n&=3, a_4=-\frac{a_3}{7}=\frac{a_0}{7\cdot5\cdot3}\\ \\ y_2(t)&=\sum\limits_{k=0}^\infty a_kt^{k+r}=a_0+a_1t+a_2t^2+a_3t^3+... \\ y_2(t)&=a_0-a_0t+\frac{a_0}{3}t^2-\frac{a_0}{5\cdot3}t^3+...\\ \boldsymbol{y_2(t)}&=\boldsymbol{a_0\left(1-t+\frac{1}{3}t^2-\frac{1}{5\cdot3}t^3+\frac{1}{7\cdot5\cdot3}t^4-... \right)} \end{aligned}
  5. x(1x)y3xyy=0x(1-x)y''-3xy'-y=0

    Solution

    The motivation behind Frobenius method is to seek a power series solution to ordinary differential equations.

    Let y(x)=n=0anxny(x) = \displaystyle \sum_{n=0}^{\infty} a_n x^n.

    Then we get that

    y(x)=n=0nanxn1y'(x) = \sum_{n=0}^{\infty} na_n x^{n-1}

    3xy(x)=n=03nanxn3xy'(x) = \sum_{n=0}^{\infty} 3na_n x^{n}

    y(x)=n=0n(n1)anxn2y''(x) = \sum_{n=0}^{\infty} n(n-1)a_n x^{n-2}

    xy(x)=n=0n(n1)anxn1=n=0n(n+1)an+1xnxy''(x) = \sum_{n=0}^{\infty} n(n-1)a_n x^{n-1} = \sum_{n=0}^{\infty} n(n+1)a_{n+1} x^{n}

    x2y(x)=n=0n(n1)anxnx^2y''(x) = \sum_{n=0}^{\infty} n(n-1)a_n x^{n}

    The ODE is xyx2y3xyy=0xy'' - x^2 y'' -3xy' - y = 0

    Plugging in the appropriate series expansions, we get that

    n=0(n(n+1)an+1n(n1)an3nanan)xn=0\sum_{n=0}^{\infty} \left(n(n+1)a_{n+1} - n(n-1)a_n - 3na_n - a_n\right)x^n = 0

    Hence, we get that

    n(n+1)an+1=(n(n1)+3n+1)an=(n+1)2an    an+1=n+1nann(n+1)a_{n+1} = (n(n-1) +3n+1)a_n = (n+1)^2 a_n \implies a_{n+1} = \dfrac{n+1}{n}a_n

    First note that a0=0a_0 = 0. Choose a1a_1 arbitrarily. Then we get that a2=2a1a_2 = 2a_1, a3=3a1a_3 = 3a_1, a4=4a1a_4 = 4a_1 and in general, an=na1a_{n} = na_1.

    Hence, the solution is given by y1(x)=a1(x+2x2+3x3+)y_1(x) = a_1 \left(x+2x^2 + 3x^3 + \cdots\right)

    This power series is valid only within x<1\vert x \vert <1. In this region, we can simplify the power series to get

    y1(x)=a1x(1+2x+3x2+)=a1xddx(x+x2+x3+)=a1xddx(x1x)=a1x(1x)2\begin{aligned} y_1(x) & = a_1 x \left(1 + 2x + 3x^2 + \cdots \right)\\ & = a_1 x \dfrac{d}{dx} \left(x + x^2 + x^3 + \cdots \right)\\ & = a_1 x \dfrac{d}{dx} \left(\dfrac{x}{1-x}\right)\\ & = a_1 \dfrac{x}{(1-x)^2} \end{aligned}

    Taking a1=1a_1=1, y1(x)=x(1x)2\boldsymbol{y_1(x)=\frac{x}{(1-x)^2}}.

    The order reduction method seeks a second basis solution in the form y=y1uy=y_1u, where y1(x)=x(1x)2y_1(x)=\frac{x}{(1-x)^2} is the already found basis solution.

    x(1x)[y1u+2y1u]3x[y1u]=0    uu=3y12(1x)y1(1x)y1x(1-x)[y_1u''+2y_1'u']-3x[y_1u']=0 \implies \frac{u''}{u'}=\frac{3y_1-2(1-x)y_1'}{(1-x)y_1}

    Insert

    y1(x)=1(1x)211xy_1(x)=\dfrac1{(1-x)^2}-\dfrac1{1-x},

    y1=2(1x)31(1x)2y_1'=\dfrac2{(1-x)^3}-\dfrac1{(1-x)^2},

    y1=6(1x)42(1x)3y_1''=\dfrac{6}{(1-x)^4}-\dfrac{2}{(1-x)^3}

    into that formula to find

    uu=1(1x)211xx1x=2xx(1x)=2x+11x    u=1x2(1x)=1+xx211x    u=1x+lnx(1x)\begin{aligned} \frac{u''}{u'}&=\frac{-\frac1{(1-x)^2}-\frac1{1-x}}{\frac{x}{1-x}}=-\frac{2-x}{x(1-x)}=-\frac{2}x+\frac1{1-x} \\ \implies u'&=\frac1{x^2(1-x)}=\frac{1+x}{x^2}-\frac1{1-x} \\ \implies u&=-\frac1x+\ln|x(1-x)| \end{aligned}

    So that the second basis solution is

    y2=xlnx(1x)1(1x)2\boldsymbol{y_2=\frac{x\ln|x(1-x)|-1}{(1-x)^2}}