Skip to main content

Tutorial 5: Engineering Applications of Differential Equations

Tutorial Question

  1. a. Given the population of rabbit in human habitat (rabbit farm) grows at a rate proportional to the number of rabbit at time tt (year). It is observed that 200 and 800 rabbits are presented at 3rd year and 6th year respectively. What was the initial number of the rabbit, y(0)=y0y(0)=y_0? How long does it take the population to double to 2y02y_0.

    Solution

    Let y=y= amount of rabit dy(t)dty\frac{d y(t)}{d t} \propto \mathrm{y}. Hence, dy(t)dt=ky\frac{d y(t)}{d t}=\mathrm{ky} where k\mathrm{k} is a constant.

    dy(t)dtdt=kydty(t)=kydt\int \frac{d y(t)}{d t} d t=\int \mathrm{ky} d t \gg y(t)=\int \mathrm{ky} d t \quad [Complicated and cannot be solved]

    Use separable method,

    dy(t)y=kdtdy(t)y=kdtlny=kt+C>y=ekt+cy=Aekt where A=ec\begin{aligned} \frac{d y(t)}{\mathrm{y}}&=\mathrm{k} d t \\ \frac{d y(t)}{\mathrm{y}}&=\int \mathrm{k} d t \\ \ln y&=k t+C \gg>y=e^{k t+c} y&=\mathrm{A} e^{k t} \text{ where } \mathrm{A}=e^c \end{aligned}

    Given y(3)=200;y(6)=800y(3)=200 ; y(6)=800, we get

    200=Ae3k(1)200=\mathrm{A} e^{3 k} \tag{1}

    and

    800=Ae6k(2)800=\mathrm{A} e^{6 k} \tag{2}

    Eqn (2) divided (1)

    800200=Ae6k Ae3k4=e3kk=ln43=0.462200=Ae3(0.462)A=200e3(0.462)=50.015=y0\begin{aligned} \frac{800}{200}&=\frac{\mathrm{A} e^{6 k}}{\mathrm{~A} e^{3 k}} \\ 4&=e^{3 k} \\ k&=\frac{\ln 4}{3}=0.462 \\ 200&=\mathrm{A} e^{3(0.462)} \\ \mathrm{A}&=200 e^{-3(0.462)}=50.015=y_0 \end{aligned}

    Hence, y=Aekt=50.015e0.462ty=\mathrm{A} e^{k t}=50.015 e^{0.462 t}

    At t=0,y(0)=50.015e0.462(0)=50.015t=0, y(0)=50.015 e^{0.462(0)}=50.015, number of rabbit is integer hence it is predicted that the initial number of rabbit is y0=50y_0=50.

    y=y0e0.462t=2y0y=y_0 e^{0.462 t}=2 y_0 t=ln20.462=1.5 year t=\frac{\ln 2}{0.462}=1.5 \text { year }

    b. A person has bought 1000 rabbits from the farm and releases them to the jungle that is full of predator (i.e. p=50p = 50 snakes at the time he/she releases the rabbit). Given the governing equation of the rabbit population is changed to dydt=p+3y(1y100)\frac{dy}{dt}=-p+3y\left(1-\frac{y}{100}\right). How long does it take the rabbit population to decrease to half?

    Hint: The doubling time decrease/increase to its initial amount/quantity is related to half-life concept. Students are encouraged to study its application in engineering. For example, to compare the charging time performance of various capacitors using half-life indicator in electrical field.

    Solution
    dydt=p+3y(1y100),t=0,y(0)=1000,p=50dydt=50+3y(1y100)1005000+3y(100y)dy=dt\begin{aligned} & \frac{d y}{d t}=-p+3 y\left(1-\frac{y}{100}\right), t=0, y(0)=1000, p=50 \\ & \frac{d y}{d t}=-50+3 y\left(1-\frac{y}{100}\right) \qquad \rightarrow \qquad \int \frac{100}{-5000+3 y(100-y)} d y=\int d t \end{aligned}

    By using partial fraction decomposition:

    1003y2300y+5000dy=Ay21.1324+B3(y78.8675)dyAy21.132A+3By236.604B=100 Coefficient of y0:A+3B=0 Coefficient of y:21.1324A236.604B=100A=1.732,B=0.5773>>\begin{aligned} & \int \frac{-100}{3 y^2-300 y+5000} d y=\int \frac{A}{y-21.1324}+\frac{B}{3(y-78.8675)} d y \\ & \begin{array}{l} A y-21.132 A+3 B y-236.604 B=-100 \qquad \rightarrow \qquad \begin{array}{l} \text { Coefficient of } y^0: A+3 B=0 \\ \text { Coefficient of } y:-21.1324 A-236.604 B=-100 \end{array} \\ A=-1.732, B=0.5773 \end{array}>> \end{aligned}

    Hence,

    1.732y21.1324+0.57733(y78.8675)dy=dt1.732lny21.1324+0.1924lny78.8675=t+C\begin{aligned} \int \frac{-1.732}{y-21.1324}+\frac{0.5773}{3(y-78.8675)} d y&=\int d t \\ -1.732 \ln |y-21.1324|+0.1924 \ln |y-78.8675|&=t+C \end{aligned}

    t=0,y(0)=1000,p=50t=0, y(0)=1000, p=50

    1.732ln100021.1324+0.1924ln100078.8675=CC=10.61401.732lny21.1324+0.1924lny78.8675=t10.6140\begin{aligned} -1.732 \ln |1000-21.1324|+0.1924 \ln |1000-78.8675|&=C\qquad\rightarrow\qquad C=-10.6140 \\ -1.732 \ln |y-21.1324|+0.1924 \ln |y-78.8675|&=t-10.6140 \end{aligned}

    Note: This is implicit solution for the system because the solution y(t)y(t) cannot be expressed in the explicit form, i.e. y=y(t)y=y(t).

    For the rabbit population to decrease to half, y(t)=0.5y0y(t)=0.5 y_0

    1.732ln50021.1324+0.1924ln50078.8675=t10.6140-1.732 \ln \vert 500-21.1324 \vert +0.1924 \ln \vert 500-78.8675 \vert=t-10.6140

    It takes t=1.088\mathrm{t}=1.088 years

  2. A brine mixing problem is illustrated in the following figure where a tank contains a liquid of volume V0=10m3V_0=10m^3 with concentration C0=0.5gm3C_0=0.5\frac{g}{m^3} initially and two valves (A & B) are opened simultaneously. The rate of change for the amount of salt in the tank over time is given: dxdt=Q1C1Q2x(t)V0+(Q1Q2)t\frac{dx}{dt}=Q_1C_1-Q_2\frac{x(t)}{V_0+(Q_1-Q_2)t}. Let x(t)=x(t)= amount of salt; concentration of salt over time =C(t)=x(t)V(t)=C(t)=\frac{x(t)}{V(t)}; Q1=Q22m3minQ_1=Q_2-2\frac{m^3}{\text{min}}; C1=1gm3\quad C_1=1\frac{g}{m^3}. What is the change of the amount of salt and also the change of its concentration over time.

    Solution

    Step 1: Linear Form

    dxdt+210+tx=2,p(t)=210+t;q(t)=2\frac{d x}{d t}+\frac{2}{10+t} x=2, \quad p(t)=\frac{2}{10+t} ; \quad q(t)=2

    Step 2: Integrating Factor

    IF=ep(t)dt=e210+tdt=e2ln(10+t)=(10+t)2IF =e^{\int_{p(t) d t}}=e^{\int \frac{2}{10+t} d t}=e^{2 \ln (10+t)}=(10+t)^2

    Step 3: Multiply

    (10+t)2dxdt+2(10+t)x=2(10+t)2(10+t)^2 \frac{d x}{d t}+2(10+t) x=2(10+t)^2

    Step 4: Exact

    ddt(x(10+t)2)=2(10+t)2\frac{d}{d t}\left(x(10+t)^2\right)=2(10+t)^2

    Step 5: Integrate

    ddt(x(10+t)2)dt=2(10+t)2dtx(10+t)2=2(10+t)2dtx(10+t)2=2(100+20t+t2)dtx(10+t)2=200t+20t2+23t3+C\begin{aligned} \int \frac{d}{d t}\left(x(10+t)^2\right) d t&=\int 2(10+t)^2 d t \\ x(10+t)^2&=\int 2(10+t)^2 d t \quad \\ x(10+t)^2&=\int 2\left(100+20 t+t^2\right) d t \\ x(10+t)^2&=200 t+20 t^2+\frac{2}{3} t^3+C \end{aligned}x(0)=x0=c0V0=5g(5)(10+0)2=200(0)+20(0)2+23(0)3+C500=C\begin{aligned} x(0)=x_0=c_0 V_0&=5 g \\ (5)(10+0)^2&=200(0)+20(0)^2+\frac{2}{3}(0)^3+C \\ 500&=C \end{aligned}

    x(t)=1(10+t)2(200t+20t2+23t3+500)\therefore x(t)=\frac{1}{(10+t)^2}\left(200 t+20 t^2+\frac{2}{3} t^3+500\right) [Change of the amount of salt over time]

    c(t)=x(t)V(t)=110(10+t)2(200t+20t2+23t3+500)\therefore c(t)=\frac{x(t)}{V(t)}=\frac{1}{10(10+t)^2}\left(200 t+20 t^2+\frac{2}{3} t^3+500\right) [ Change of the concentration of salt over time]

  3. The figure below shows the outflow of water from a cylindrical tank with a hole at the bottom. Determine the height of the water in the tank at any time if the tank has a diameter of 2m, the hole has diameter 1cm, and the initial height of the water when the hole is opened is 2.25m. When will the tank be empty?

    Solution

    Step 1: Setting up the model

    To get an equation, we relate the decrease in water level h(t)h(t) to the outflow. The volume ΔV\Delta V of the outflow during a short time Δt\Delta t is

    ΔV=AvΔt(A= Area of hole )\Delta V=A v \Delta t \tag{A=\text { Area of hole }}

    ΔV\Delta V must equal the change ΔV\Delta V^* of the volume of the water in the tank. Now

    ΔV=BΔh(B= Cross-sectional area of tank )\Delta V^*=-B \Delta h \tag{B=\text { Cross-sectional area of tank }}

    where Δh(>0)\Delta h(>0) is the decrease of the height h(t)h(t) of the water. The minus sign appears because the volume of the water in the tank decreases. Equating ΔV\Delta V and ΔV\Delta V^* gives

    BΔh=AvΔt.-B \Delta h=A v \Delta t .

    We now express vv according to Torricelli's law and then let Δt\Delta t (the length of the time interval considered) approach 0 - this is a standard way of obtaining an ODE as a model. That is, we have

    ΔhΔt=ABv=AB0.6002gh(t)\frac{\Delta h}{\Delta t}=-\frac{A}{B} v=-\frac{A}{B} 0.600 \sqrt{2 g h(t)}

    and by letting Δt0\Delta t \rightarrow 0 we obtain the ODE

    dhdt=26.56ABh\frac{d h}{d t}=-26.56 \frac{A}{B} \sqrt{h}

    where 26.56=0.600298026.56=0.600 \sqrt{2 \cdot 980}. This is our model, a first-order ODE.

    Step 2: General solution

    Our ODE is separable. A/BA / B is constant. Separation and integration gives

    dhh=26.56ABdt and 2h=c26.56ABt.\frac{d h}{\sqrt{h}}=-26.56 \frac{A}{B} d t \quad \text { and } \quad 2 \sqrt{h}=c^*-26.56 \frac{A}{B} t .

    Dividing by 2 and squaring gives h=(c13.28At/B)2h=(c-13.28 A t / B)^2. Inserting 13.28A/B=13.280.52π/1002π=0.00033213.28 A / B=13.28 \cdot 0.5^2 \pi / 100^2 \pi=0.000332 yields the general solution

    h(t)=(c0.000332t)2.h(t)=(c-0.000332 t)^2 .

    Step 3: Particular solution

    The initial height (the initial condition) is h(0)=225 cmh(0)=225 \mathrm{~cm}. Substitution of t=0t=0 and h=225h=225 gives from the general solution c2=225,c=15.00c^2=225, c=15.00 and thus the particular solution

    hp(t)=(15.000.000332t)2.h_p(t)=(15.00-0.000332 t)^2 .

    Step 4: Tank empty

    hp(t)=0 if t=15.00/0.000332=45,181 sec=12.6 hoursh_p(t)=0 \text{ if } t=15.00 / 0.000332=45,181\text{ sec}=12.6\text{ hours}

    Here you see distinctly the importance of the choice of units — we have been working with the cgs system, in which time is measured in seconds! We used g=980 cm/sec2g=980 \mathrm{~cm} / \mathrm{sec}^2.

    Step 5: Checking

    Check the result.

  4. Given the governing equation for RLC electrical circuit: Ld2q(t)dt2+Rdq(t)dt+1Cq(t)=E(t)L\frac{d^2q(t)}{dt^2}+R\frac{dq(t)}{dt}+\frac{1}{C}q(t)=E(t). An inductor of L=2L = 2 henrys and a resistor of R=10R = 10 ohms are connected in series with an emf of EE volts. Note that in this case the capacitor has been removed. At t=0t = 0, the switch SS is closed, thus no charge and current flow at that moment. Find the charge and current at any time t>0t >0 if

    a. E(t)=40E(t) = 40 volts

    Solution
    2di(t)dt+10i(t)=402 \frac{d i(t)}{d t}+10 i(t)=40

    It is linear differential equation that can is separable

    di(t)205i(t)=dt15ln205i=t+C\begin{aligned} \int \frac{d i(t)}{20-5 i(t)}&=\int d t \frac{1}{-5} \ln \vert20-5 i\vert&=t+C \end{aligned}

    Apply initial condition i(0)=0i(0)=0,

    15ln205(0)=(0)+CC=0.599\begin{aligned} \frac{1}{-5} \ln |20-5(0)|&=(0)+C \\ C&=-0.599 \end{aligned}15ln205i=t0.599i(t)=20e5t+2.9965=415e5t+2.996=4(1e5t)(Current)\begin{aligned} \therefore \frac{1}{-5} \ln \vert 20-5 i\vert &=t-0.599 \\ i(t)&=\frac{20-e^{-5 t+2.996}}{5}=4-\frac{1}{5} e^{-5 t+2.996}=4\left(1-e^{-5 t}\right) \tag{\text{Current}} \end{aligned}q(t)=4(1e5t)dt=4t+4e3t5+Cq(t)=\int 4\left(1-e^{-5 t}\right) d t=4 t+\frac{4 e^{-3 t}}{5}+C

    Apply initial condition q(0)=0q(0)=0,

    q(0)=4(0)+4e5(0)5+C=0C=4/5q(t)=4(1e5t)dt=4t+4e5t545(Charge)\begin{aligned} q(0)&=4(0)+\frac{4 e^{-5(0)}}{5}+C=0 \\ C&=-4 / 5 \gg \\ q(t)&=\int 4\left(1-e^{-5 t}\right) d t=4 t+\frac{4 e^{-5 t}}{5}-\frac{4}{5} \tag{Charge} \end{aligned}

    You can get the same answer by using linear differential equation with integrating factor:

    2di(t)dt+10i(t)=40di(t)dt+5i(t)=20\begin{aligned} 2 \frac{d i(t)}{d t}+10 i(t)&=40 \\ \frac{d i(t)}{d t}+5 i(t)&=20 \end{aligned}

    where p(t)=5;q(t)=5p(t)=5 ; q(t)=5

    IF=ep(t)dt=e5dt=e3te3tdi(t)dt+e3t5i(t)=20e3tddt(e3ti)=20e3te5ti=20e5tdt=4e5t+Ci(t)=20e5tdt=4+Ce5ti(0)=4+Ce5(0)=0C=4i(t)=4(1e5t)\begin{aligned} IF&=e^{\int p(t) d t}=e^{\int 5 d t}=e^{3 t} \\ e^{3 t} \frac{d i(t)}{d t}+e^{3 t} 5 i(t)&=20 e^{3 t} \\ \frac{d}{d t}\left(e^{3 t} i\right)&=20 e^{3 t} \\ e^{5 t} i&=\int 20 e^{5 t} d t=4 e^{5 t}+C \\ i(t)&=\int 20 e^{5 t} d t=4+C e^{-5 t} \\ i(0)&=4+C e^{-5(0)}=0 C&=-4 \\ \therefore i(t)&=4\left(1-e^{-5 t}\right) \end{aligned}

    Hence

    q(t)=4(1e5t)dt=4t+4e5t545\quad q(t)=\int 4\left(1-e^{-5 t}\right) d t=4 t+\frac{4 e^{-5 t}}{5}-\frac{4}{5}

    [Same answer as previous]

    Note: There are at least one method to solve the differential equation. Choose the favourable one in term of efficiency. In term of accuracy, all provide the correct answer.

    b. a. E(t)=20e3tE(t) = 20 e^{-3t} volts

    Solution
    2di(t)dt+10i(t)=20e3t2 \frac{d i(t)}{d t}+10 i(t)=20 e^{-3 t}

    It is linear differential equation that is separable

    di(t)10e3t5i(t)=dt\int \frac{d i(t)}{10 e^{-3 t}-5 i(t)}=\int d t

    Difficult to be solved in this form, try other method.

    2di(t)dt+10i(t)=20e3tdi(t)dt+5i(t)=10e3t\begin{aligned} 2 \frac{d i(t)}{d t}+10 i(t)&=20 e^{-3 t} \frac{d i(t)}{d t}+5 i(t)&=10 e^{-3 t} \end{aligned}

    where p(t)=5;q(t)=10e3tp(t)=5 ; q(t)=10 e^{-3 t}

    IF=ep(t)dt=e5dt=e5te5tdi(t)dt+e5t5i(t)=10e3te5tddt(e5ti)=10e2te5ti=10e2tdt=5e2t+Ce5t(0)=5e2(0)+CC=5\begin{aligned} IF&=e^{\int p(t) d t}=e^{\int 5 d t}=e^{5 t} \\ e^{5 t} \frac{d i(t)}{d t}+e^{5 t} 5 i(t)&=10 e^{-3 t} e^{5 t} \\ \frac{d}{d t}\left(e^{5 t} i\right)&=10 e^{2 t} \\ e^{5 t} i&=\int 10 e^{2 t} d t=5 e^{2 t}+C \\ e^{5 t}(0)&=5 e^{2(0)}+C C&=-5 \end{aligned}

    Thus

    i(t)=5e3t5e5t=5(e3te5t)i(t)=5 e^{-3 t}-5 e^{-5 t}=5\left(e^{-3 t}-e^{-5 t}\right)

    Hence,

    q(t)=5(e3te5t)dt=53e3t+e5t+Cq(0)=53e3(0)+e5(0)+C=0\begin{aligned} q(t)&=\int 5\left(e^{-3 t}-e^{-5 t}\right) d t=\frac{5}{-3} e^{-3 t}+e^{-5 t}+C \\ q(0)&=\frac{5}{-3} e^{-3(0)}+e^{-5(0)}+C=0 \end{aligned}

    Hence, C=53C=\frac{5}{3}

    q(t)=53e3t+e5t+53\therefore q(t)=\frac{5}{-3} e^{-3 t}+e^{-5 t}+\frac{5}{3}
  5. Let the governing equation for a vibrating car structure: 2d2x(t)dt2+7dx(t)dt+8x(t)=F(t)forcing function2\frac{d^2x(t)}{dt^2}+7\frac{dx(t)}{dt}+8x(t)=\underbrace{F(t)}_{\text{forcing function}}. x(0)=2x(0)=2, x(0)=0x(0)=0. Find the total solution for the 2nd order ODE equation if the forcing function is given as follows:

    a. No excitation, F=0F =0 and it is subjected to initial condition. Hence prove that the solutions are linearly independent to each other.

    Solution

    Homogeneous Part, 2d2x(t)dt2+9dx(t)dt+8x(t)=0;x(0)=2,x˙(0)=02\frac{d^{2} x( t)}{dt^{2}} +9\frac{dx( t)}{dt} +8x( t) =0;\quad x( 0) =2,\quad \dot{x}( 0) =0

    Characteristic equation:

    2m2+7m+8=0m=7±724(2)(8)2(2)=7±154=74±i154\begin{aligned} 2m^{2} +7m+8 & =0\\ m & =\frac{-7\pm \sqrt{7^{2} -4( 2)( 8)}}{2( 2)} =\frac{-7\pm \sqrt{-15}}{4} =-\frac{7}{4} \pm i\frac{\sqrt{15}}{4} \end{aligned}

    Comment: A pair of complex conjugates roots (m1=74+i154; m2=74i154m_{1} =-\frac{7}{4} +i\frac{\sqrt{15}}{4} ;\ m_{2} =-\frac{7}{4} -i\frac{\sqrt{15}}{4})

    Complementary solution:

    x(t)=c1e(74+i)t+c2e(74i)t=e(74)t(c1e(i154)t+c2e(i154)t)=e(74+i)t(Acos154t+Bsin154t)\begin{aligned} x( t) & =c_{1} e^{\left( -\frac{7}{4} +i\right) t} +c_{2} e^{\left( -\frac{7}{4} -i\right) t} =e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right)\\ & =e^{\left( -\frac{7}{4} +i\right) t}\left( A\cos\frac{\sqrt{15}}{4} t+B\sin\frac{\sqrt{15}}{4} t\right) \end{aligned}

    where e±ix=cosx±isinx, A=c1+c2, B=i(c1c2)e^{\pm ix} =\cos x\pm i\sin x,\ A=c_{1} +c_{2} ,\ B=i( c_{1} -c_{2})

    Initial Value Problem

    x(t)=c1e(74+i154)t+c2e(74i154)tx˙(t)=(74+i154)c1e(74+i154)t+(74i154)c1e(74i154)t\begin{gather*} x( t) =c_{1} e^{\left( -\frac{7}{4} +i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -\frac{7}{4} -i\frac{\sqrt{15}}{4}\right) t}\\ \dot{x}( t) =\left( -\frac{7}{4} +i\frac{\sqrt{15}}{4}\right) c_{1} e^{\left( -\frac{7}{4} +i\frac{\sqrt{15}}{4}\right) t} +\left( -\frac{7}{4} -i\frac{\sqrt{15}}{4}\right) c_{1} e^{\left( -\frac{7}{4} -i\frac{\sqrt{15}}{4}\right) t} \end{gather*}x(0)=c1e(74+i154)(0)+c2e(74i154)(0)=2c1+c2=2(1)x( 0) =c_{1} e^{\left( -\frac{7}{4} +i\frac{\sqrt{15}}{4}\right)( 0)} +c_{2} e^{\left( -\frac{7}{4} -i\frac{\sqrt{15}}{4}\right)( 0)} =2\Longrightarrow c_{1} +c_{2} =2 \tag{1}x˙(0)=(74+i154)c1e(74+i154)(0)+(74i154)c1e(74i154)(0)(74+i154)(2c2)+(74i154)c2=0(2)\begin{gather} \dot{x}( 0) =\left( -\frac{7}{4} +i\frac{\sqrt{15}}{4}\right) c_{1} e^{\left( -\frac{7}{4} +i\frac{\sqrt{15}}{4}\right)( 0)} +\left( -\frac{7}{4} -i\frac{\sqrt{15}}{4}\right) c_{1} e^{\left( -\frac{7}{4} -i\frac{\sqrt{15}}{4}\right)( 0)}\\ \Longrightarrow \left( -\frac{7}{4} +i\frac{\sqrt{15}}{4}\right)( 2-c_{2}) +\left( -\frac{7}{4} -i\frac{\sqrt{15}}{4}\right) c_{2} =0 \end{gather} \tag{2}

    Solving (1) and (2) simultaneously, c1=11.807i; c2=1+1.807ic_{1} =1-1.807i;\ c_{2} =1+1.807i

    x(t)=(11.807i)e(74+i154)t+(1+1.807i)e(74i154)tx( t) =( 1-1.807i) e^{\left( -\frac{7}{4} +i\frac{\sqrt{15}}{4}\right) t} +( 1+1.807i) e^{\left( -\frac{7}{4} -i\frac{\sqrt{15}}{4}\right) t}

    b. Repeat the same problem in 5(a) with various combinations of damping, i.e. 2d2x(t)dt2+8dx(t)dt+8x(t)=F(t)forcing function2\frac{d^{2} x( t)}{dt^{2}} +8\frac{dx( t)}{dt} +8x( t) =\underbrace{F(t)}_{\text{forcing function}}.

    Solution

    Homogeneous Part, 2d2x(t)dt2+9dx(t)dt+8x(t)=0;x(0)=2,x˙(0)=02\frac{d^{2} x( t)}{dt^{2}} +9\frac{dx( t)}{dt} +8x( t) =0;\quad x( 0) =2,\quad \dot{x}( 0) =0

    Characteristic equation:

    2m2+8m+8=0m=8±824(2)(8)2(2)=8±04=84=2\begin{aligned} 2m^{2} +8m+8 & =0\\ m & =\frac{-8\pm \sqrt{8^{2} -4( 2)( 8)}}{2( 2)} =\frac{-8\pm \sqrt{0}}{4} =-\frac{8}{4} =-2 \end{aligned}

    Comment: Repeated real root (m1=m2=2m_{1} =m_{2} =-2)

    Complementary solution: x(t)=c1e2t+c2te2tx( t) =c_{1} e^{-2t} +c_{2} te^{-2t}

    Initial Value Problem

    x(t)=c1e2t+c2te2tx˙(t)=2c1e2t+c2t(2)e2t+e2tc2\begin{gather*} x( t) =c_{1} e^{-2t} +c_{2} te^{-2t}\\ \dot{x}( t) =-2c_{1} e^{-2t} +c_{2} t( -2) e^{-2t} +e^{-2t} c_{2} \end{gather*}x(0)=c1e(2)(0)+c2(0)e(2)(0)=2c1=2\begin{aligned} x( 0) & =c_{1} e^{( -2)( 0)} +c_{2}( 0) e^{( -2)( 0)} =2\Longrightarrow c_{1} =2 \end{aligned}x˙(0)=2(2)e(2)(0)+c2(0)(2)e(2)(0)+e(2)(0)c2=0c2=4\dot{x}( 0) =-2( 2) e^{( -2)( 0)} +c_{2}( 0)( -2) e^{( -2)( 0)} +e^{( -2)( 0)} c_{2} =0\Longrightarrow c_{2} =4x(t)=2e2t+4te2t\mathbf{x( t) =2e^{-2t} +4te^{-2t}}

    c. Repeat the same problem in 5(a) with various combinations of damping, i.e. 2d2x(t)dt2+9dx(t)dt+8x(t)=F(t)forcing function2\frac{d^{2} x( t)}{dt^{2}} +9\frac{dx( t)}{dt} +8x( t) =\underbrace{F(t)}_{\text{forcing function}}.

    Solution

    Homogeneous Part, 2d2x(t)dt2+9dx(t)dt+8x(t)=0;x(0)=2,x˙(0)=02\frac{d^{2} x( t)}{dt^{2}} +9\frac{dx( t)}{dt} +8x( t) =0;\quad x( 0) =2,\quad \dot{x}( 0) =0

    Characteristic equation:

    2m2+9m+8=0m=9±924(2)(8)2(2)=9±174\begin{aligned} 2m^{2} +9m+8 & =0\\ m & =\frac{-9\pm \sqrt{9^{2} -4( 2)( 8)}}{2( 2)} =\frac{-9\pm \sqrt{17}}{4} \end{aligned}

    Comment: Real and distinct root (m1=1.2192; m2=3.2808m_{1} =-1.2192;\ m_{2} =-3.2808)

    Complementary solution: x(t)=c1e(1.2192)t+c2e(3.2808)tx( t) =c_{1} e^{( -1.2192) t} +c_{2} e^{( -3.2808) t}

    Initial Value Problem

    x(t)=c1e(1.2192)t+c2e(3.2808)tx˙(t)=1.2192c1e(1.2192)t3.2808c2e(3.2808)t\begin{gather*} x( t) =c_{1} e^{( -1.2192) t} +c_{2} e^{( -3.2808) t}\\ \dot{x}( t) =-1.2192c_{1} e^{( -1.2192) t} -3.2808c_{2} e^{( -3.2808) t} \end{gather*}x(0)=c1e(1.2192)(0)+c2e(3.2808)(0)=2c1+c2=2\begin{aligned} x( 0) & =c_{1} e^{( -1.2192)( 0)} +c_{2} e^{( -3.2808)( 0)} =2\Longrightarrow c_{1} +c_{2} =2 \end{aligned}x˙(0)=1.2192c1e(1.2192)(0)3.2808c2e(3.2808)(0)=01.2192c13.2808c2e=0\dot{x}( 0) =-1.2192c_{1} e^{( -1.2192)( 0)} -3.2808c_{2} e^{( -3.2808)( 0)} =0\Longrightarrow -1.2192c_{1} -3.2808c_{2} e=0

    Solving (1) and (2) simultaneously, c1=3.1828; c2=1.1828c_{1} =3.1828;\ c_{2} =-1.1828

    x(t)=3.1828e(1.2192)t1.1828e(3.2808)t\mathbf{x( t) =3.1828e^{( -1.2192) t} -1.1828e^{( -3.2808) t}}
  6. Continue the problem 5. Let the governing equation for a vibrating car structure: 2d2x(t)dt2+7dx(t)dt+8x(t)=F(t)forcing function2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =\underbrace{F(t)}_{\text{forcing function}}, x(0)=2, x˙(0)=0x( 0) =2,\ \dot{x}( 0) =0. Find the total solution for the 2nd order ODE equation if the forcing function is given as follows:

    a. Engine excitation F(t)=5cos10tF( t) =5\cos 10t

    Solution
    Step 1: Homogeneous Part
    2d2x(t)dt2+7dx(t)dt+8x(t)=02\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =0
    Step 2: Nonhomogeneous Part
    2d2x(t)dt2+7dx(t)dt+8x(t)=5cos10t2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =5\cos 10t,
    r(t)=eαtPn(t)=5cos10t=5Re[ei10t]r( t) =e^{\alpha t} P_{n}( t) =5\cos 10t=5Re\left[ e^{i10t}\right]
    Characteristic equation:
    2m2+7m+8=0m=7±724(2)(8)2(2)=7±154=74±i154\begin{aligned}2m^{2} +7m+8 & =0\\m & =-\frac{-7\pm \sqrt{7^{2} -4( 2)( 8)}}{2( 2)}\\& =\frac{-7\pm \sqrt{-15}}{4}\\& =-\frac{7}{4} \pm i\frac{\sqrt{15}}{4}\end{aligned}

    Comment: A pair of complex conjugates roots
    (m1=74+i154, m2=74i154m_{1} =-\frac{7}{4} +i\frac{\sqrt{15}}{4} ,\ m_{2} =-\frac{7}{4} -i\frac{\sqrt{15}}{4})

    Complementary solution:
    x(t)=e(74)t(c1e(i154)t+c2e(i154)t)x( t) = e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right)
    For exponential function, 5Re[ei10t]5Re\left[ e^{i10t}\right], α=10i, n=0\alpha =10i,\ n=0

    Since αm1 or m2\alpha \neq m_{1} \ \text{or} \ m_{2},
    Assume xp,real=Re[xp]x_{p,real} =Re[ x_{p}],
    xp(t)=e(αt)Qn(t)=Ae(10it)x_{p}( t) =e^{( \alpha t)} Q_{n}( t) =Ae^{( 10it)}

    Differentiate it gives,ddx(xp(t))=10iAe(10it)d2dx2(xp(t))=100Ae(10it)\begin{aligned}\frac{d}{dx}( x_{p}( t)) & =10iAe^{( 10it)}\\\frac{d^{2}}{dx^{2}}( x_{p}( t)) & =-100Ae^{( 10it)}\end{aligned}

    Then, we get
    2d2x(t)dt2+7dx(t)dt+8x(t)=5cos10t2(100Ae(10it))+7(10iAe(10it))+8(Ae(10it))=5cos10te(10it)(192A+70iA)=5e(10it)\begin{aligned}2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) & =5\cos 10t\\2\left( -100Ae^{( 10it)}\right) +7\left( 10iAe^{( 10it)}\right) +8\left( Ae^{( 10it)}\right) & =5\cos 10t\\e^{( 10it)}( -192A+70iA) & =5e^{( 10it)}\end{aligned}

    Comparing the coefficient,
    (192A+70iA)=5A=570i192( -192A+70iA) =5\Longrightarrow A=\frac{5}{70i-192}

    Actual particular solution,
    xp(t)=570i192e(10it)=570i192(cos10t+isin10t)70i19270i192=(960cos10t+350sin10t)+i(350cos10t960sin10t)41764\begin{aligned}x_{p}( t) & =\frac{5}{70i-192} e^{( 10it)}\\& =\frac{5}{70i-192}(\cos 10t+i\sin 10t)\frac{-70i-192}{-70i-192}\\& =\frac{( -960\cos 10t+350\sin 10t) +i( -350\cos 10t-960\sin 10t)}{41764}\end{aligned}

    xp,real(t)=Re[xp]=0.02299cos10t+0.00838sin10tx_{p,real}( t) =Re[ x_{p}] =-0.02299\cos 10t+0.00838\sin 10t

    The complete/general solution to 2d2x(t)dt2+7dx(t)dt+8x(t)=5cos10t2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =5\cos 10t is xtotal=xc+xp=e(74)t(c1e(i154)t+c2e(i154)t)0.02299cos10t+0.00838sin10tx_{total} =x_{c} +x_{p} =e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) -0.02299\cos 10t+0.00838\sin 10t.

    Initial Value Problem

    x(0)=e(74)0(c1e(i154)0+c2e(i154)0)0.02299cos10(0)+0.00838sin10(0)=2c1+c2=2.02299x( 0) =e^{\left( -\frac{7}{4}\right) 0}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) -0.02299\cos 10( 0) +0.00838\sin 10( 0) =2\Longrightarrow c_{1} +c_{2} =2.02299

    x˙total=e(74)t(i154c1e(i154)ti154c2e(i154)t)74e(74)t(c1e(i154)t+c2e(i154)t)+0.2299sin10t+0.0838cos10tx˙(0)=e(74)0(i154c1e(i154)0i154c2e(i154)0)74e(74)0(c1e(i154)0+c2e(i154)0)+0.2299sin10(0)+0.0838cos10(0)x˙(0)(2.02299i154c2i2154)74(2.02299)+0.838=0\begin{aligned} \dot{x}_{total} & =e^{\left( -\frac{7}{4}\right) t}\left( i\frac{\sqrt{15}}{4} c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} -i\frac{\sqrt{15}}{4} c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right)\\ & -\frac{7}{4} e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) +0.2299\sin 10t+0.0838\cos 10t\\ \dot{x}( 0) & =e^{\left( -\frac{7}{4}\right) 0}\left( i\frac{\sqrt{15}}{4} c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} -i\frac{\sqrt{15}}{4} c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right)\\ & -\frac{7}{4} e^{\left( -\frac{7}{4}\right) 0}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) +0.2299\sin 10( 0) +0.0838\cos 10( 0)\\ \dot{x}( 0) & \left( 2.02299i\frac{\sqrt{15}}{4} -c_{2} i\frac{2\sqrt{15}}{4}\right) -\frac{7}{4}( 2.02299) +0.838=0 \end{aligned}

    c2=3.45641.9588i1.9365i×ii=1.7849i+1.0115;c1=1.01151.7849ic_{2} =\frac{3.4564-1.9588i}{-1.9365i} \times \frac{i}{i} =1.7849i+1.0115;\quad c_{1} =1.0115-1.7849i

    x(t)=e(74)t((1.01151.7849i)e(i154)t+(1.01151.7849i)e(i154)t)0.02299cos10t+0.00838sin10t\mathbf{x( t) =e^{\left( -\frac{7}{4}\right) t}\left(( 1.0115-1.7849i) e^{\left( i\frac{\sqrt{15}}{4}\right) t} +( 1.0115-1.7849i) e^{\left( i\frac{\sqrt{15}}{4}\right) t}\right) -0.02299\cos 10t+0.00838\sin 10t}

    b. Engine excitation F(t)=8sin8tF( t) =8\sin 8t

    Solution
    Step 1: Homogeneous Part
    2d2x(t)dt2+7dx(t)dt+8x(t)=02\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =0
    Step 2: Nonhomogeneous Part
    2d2x(t)dt2+7dx(t)dt+8x(t)=8sin8t2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =8\sin 8t,
    r(t)=eαtPn(t)=8sin8t=8Im[ei8t]r( t) =e^{\alpha t} P_{n}( t) =8\sin 8t=8Im\left[ e^{i8t}\right]
    Characteristic equation:
    2m2+7m+8=0m=7±724(2)(8)2(2)=7±154=74±i154\begin{aligned}2m^{2} +7m+8 & =0\\m & =-\frac{-7\pm \sqrt{7^{2} -4( 2)( 8)}}{2( 2)}\\& =\frac{-7\pm \sqrt{-15}}{4}\\& =-\frac{7}{4} \pm i\frac{\sqrt{15}}{4}\end{aligned}

    Comment: A pair of complex conjugates roots
    (m1=74+i154, m2=74i154m_{1} =-\frac{7}{4} +i\frac{\sqrt{15}}{4} ,\ m_{2} =-\frac{7}{4} -i\frac{\sqrt{15}}{4})

    Complementary solution:
    x(t)=e(74)t(c1e(i154)t+c2e(i154)t)x( t) = e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right)
    For exponential function, 8Im[ei8t]8Im\left[ e^{i8t}\right], α=8i, n=0\alpha =8i,\ n=0

    Since αm1 or m2\alpha \neq m_{1} \ \text{or} \ m_{2},
    Assume xp,real=Im[xp]x_{p,real} =Im[ x_{p}],
    xp(t)=e(αt)Qn(t)=Ae(8it)x_{p}( t) =e^{( \alpha t)} Q_{n}( t) =Ae^{( 8it)}

    Differentiate it gives,
    ddx(xp(t))=8iAe(8it)d2dx2(xp(t))=64Ae(8it)\begin{aligned}\frac{d}{dx}( x_{p}( t)) & =8iAe^{( 8it)}\\\frac{d^{2}}{dx^{2}}( x_{p}( t)) & =-64Ae^{( 8it)}\end{aligned}

    Then, we get
    2d2x(t)dt2+7dx(t)dt+8x(t)=8sin8t2(64Ae(8it))+7(8iAe(8it))+8(Ae(8it))=8sin8te(8it)(56i120)A=8e(8it)\begin{aligned}2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) & =8\sin 8t\\2\left( -64Ae^{( 8it)}\right) +7\left( 8iAe^{( 8it)}\right) +8\left( Ae^{( 8it)}\right) & =8\sin 8t\\e^{( 8it)}( 56i-120) A & =8e^{( 8it)}\end{aligned}

    Comparing the coefficient,
    (56i120)A=8A=856i120( 56i-120) A=8\Longrightarrow A=\frac{8}{56i-120}

    Actual particular solution,
    xp(t)=856i120e(8it)=856i120(cos8t+isin8t)56i12056i120=(448sin8t960cos8t)+i(448cos8t960sin8t)17536\begin{aligned}x_{p}( t) & =\frac{8}{56i-120} e^{( 8it)}\\& =\frac{8}{56i-120}(\cos 8t+i\sin 8t)\frac{-56i-120}{-56i-120}\\& =\frac{( 448\sin 8t-960\cos 8t) +i( -448\cos 8t-960\sin 8t)}{17536}\end{aligned}

    xp,real(t)=Im[xp]=7274cos8t15274sin8tx_{p,real}( t) =Im[ x_{p}] =-\frac{7}{274}\cos 8t-\frac{15}{274}\sin 8t

    The complete/general solution to 2d2x(t)dt2+7dx(t)dt+8x(t)=8sin8t2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =8\sin 8t is xtotal=xc+xp=e(74)t(c1e(i154)t+c2e(i154)t)7274cos8t15274sin8tx_{total} =x_{c} +x_{p} =e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) -\frac{7}{274}\cos 8t-\frac{15}{274}\sin 8t

    Initial Value Problem

    x(0)=e(74)0(c1e(i154)0+c2e(i154)0)7274cos8(0)15274sin8(0)=2c1+c2=2.0255x( 0) =e^{\left( -\frac{7}{4}\right) 0}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) -\frac{7}{274}\cos 8( 0) -\frac{15}{274}\sin 8( 0) =2\Longrightarrow c_{1} +c_{2} =2.0255

    x˙total=e(74)t(i154c1e(i154)ti154c2e(i154)t)74e(74)t(c1e(i154)t+c2e(i154)t)56274cos8t90274sin8tx˙(0)=e(74)0(i154c1e(i154)0i154c2e(i154)0)74e(74)0(c1e(i154)0+c2e(i154)0)+56274cos8(0)90274sin8(0)=0\begin{aligned} \dot{x}_{total} & =e^{\left( -\frac{7}{4}\right) t}\left( i\frac{\sqrt{15}}{4} c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} -i\frac{\sqrt{15}}{4} c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right)\\ & -\frac{7}{4} e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) -\frac{56}{274}\cos 8t-\frac{90}{274}\sin 8t\\ \dot{x}( 0) & =e^{\left( -\frac{7}{4}\right) 0}\left( i\frac{\sqrt{15}}{4} c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} -i\frac{\sqrt{15}}{4} c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right)\\ & -\frac{7}{4} e^{\left( -\frac{7}{4}\right) 0}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) +\frac{56}{274}\cos 8( 0) -\frac{90}{274}\sin 8( 0) =0 \end{aligned}

    c2=3.98261.9612i1.9364i×ii=2.0567i+1.0128;c1=1.0282.0567ic_{2} =\frac{3.9826-1.9612i}{-1.9364i} \times \frac{i}{i} =2.0567i+1.0128;\quad c_{1} =1.028-2.0567i

    x(t)=e(74)t((1.01282.0567i)e(i154)t+(1.0128+2.0567i)e(i154)t)7274cos8t15274sin8t\mathbf{x( t) =e^{\left( -\frac{7}{4}\right) t}\left(( 1.0128-2.0567i) e^{\left( i\frac{\sqrt{15}}{4}\right) t} +( 1.0128+2.0567i) e^{\left( i\frac{\sqrt{15}}{4}\right) t}\right) -\frac{7}{274}\cos 8t-\frac{15}{274}\sin 8t}

    c. Engine excitation F(t)=e10tF( t) =e^{-10t}

    Solution
    Step 1: Homogeneous Part
    2d2x(t)dt2+7dx(t)dt+8x(t)=02\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =0
    Step 2: Nonhomogeneous Part
    2d2x(t)dt2+7dx(t)dt+8x(t)=e10t2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =e^{-10t},
    r(t)=eαtPn(t)=e10tr( t) =e^{\alpha t} P_{n}( t) =e^{-10t}
    Characteristic equation:
    2m2+7m+8=0m=7±724(2)(8)2(2)=7±154=74±i154\begin{aligned}2m^{2} +7m+8 & =0\\m & =-\frac{-7\pm \sqrt{7^{2} -4( 2)( 8)}}{2( 2)}\\& =\frac{-7\pm \sqrt{-15}}{4}\\& =-\frac{7}{4} \pm i\frac{\sqrt{15}}{4}\end{aligned}

    Comment: A pair of complex conjugates roots
    (m1=74+i154, m2=74i154m_{1} =-\frac{7}{4} +i\frac{\sqrt{15}}{4} ,\ m_{2} =-\frac{7}{4} -i\frac{\sqrt{15}}{4})

    Complementary solution:
    x(t)=e(74)t(c1e(i154)t+c2e(i154)t)x( t) = e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right)
    For exponential function, α=10, n=0\alpha =-10,\ n=0

    Since αm1 or m2\alpha \neq m_{1} \ \text{or} \ m_{2},
    xp(t)=e(αt)Qn(t)=Ae(10t)x_{p}( t) =e^{( \alpha t)} Q_{n}( t) =Ae^{( -10t)}

    Differentiate it gives,
    ddx(xp(t))=10Ae(10t)d2dx2(xp(t))=100Ae(10t)\begin{aligned}\frac{d}{dx}( x_{p}( t)) & =-10Ae^{( -10t)}\\\frac{d^{2}}{dx^{2}}( x_{p}( t)) & =100Ae^{( -10t)}\end{aligned}

    Then, we get
    2d2x(t)dt2+7dx(t)dt+8x(t)=e(10t)2(100Ae(10t))+7(10Ae(10t))+8(Ae(10t))=e(10t)e(8it)(20070+8)A=e(10t)\begin{aligned}2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) & =e^{( -10t)}\\2\left( 100Ae^{( -10t)}\right) +7\left( -10Ae^{( -10t)}\right) +8\left( Ae^{( -10t)}\right) & =e^{( -10t)}\\e^{( 8it)}( 200-70+8) A & =e^{( -10t)}\end{aligned}

    Comparing the coefficient,
    138A=1A=1138138A=1\Longrightarrow A=\frac{1}{138}

    Actual particular solution,
    xp(t)=e(αt)Qn(t)=1138e(10t)x_{p}( t) =e^{( \alpha t)} Q_{n}( t) =\frac{1}{138} e^{( -10t)}

    The complete/general solution to 2d2x(t)dt2+7dx(t)dt+8x(t)=e10t2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =e^{-10t} is xtotal=xc+xp=e(74)t(c1e(i154)t+c2e(i154)t)+1138e10tx_{total} =x_{c} +x_{p} =e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) +\frac{1}{138} e^{-10t}

    Initial Value Problem

    x(0)=e(74)0(c1e(i154)0+c2e(i154)0)+1138e10(0)=2c1+c2=1.9928x( 0) =e^{\left( -\frac{7}{4}\right) 0}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) +\frac{1}{138} e^{-10( 0)} =2\Longrightarrow c_{1} +c_{2} =1.9928

    x˙total=e(74)t(i154c1e(i154)ti154c2e(i154)t)74e(74)t(c1e(i154)t+c2e(i154)t)10138e10tx˙(0)=e(74)0(i154c1e(i154)0i154c2e(i154)0)74e(74)0(c1e(i154)0+c2e(i154)0)10138e10(0)=0\begin{aligned} \dot{x}_{total} & =e^{\left( -\frac{7}{4}\right) t}\left( i\frac{\sqrt{15}}{4} c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} -i\frac{\sqrt{15}}{4} c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) -\frac{7}{4} e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) -\frac{10}{138} e^{-10t}\\ \dot{x}( 0) & =e^{\left( -\frac{7}{4}\right) 0}\left( i\frac{\sqrt{15}}{4} c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} -i\frac{\sqrt{15}}{4} c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) -\frac{7}{4} e^{\left( -\frac{7}{4}\right) 0}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) -\frac{10}{138} e^{-10( 0)} =0 \end{aligned}

    c2=3.55991.9295i1.9365i×ii=1.8383i+0.9964;c1=0.99641.8383ic_{2} =\frac{3.5599-1.9295i}{-1.9365i} \times \frac{i}{i} =1.8383i+0.9964;\quad c_{1} =0.9964-1.8383i

    x(t)=e(74)t((0.99641.8383i)e(i154)t+(0.9964+1.8383i)e(i154)t)+1138e10t\mathbf{x( t) =e^{\left( -\frac{7}{4}\right) t}\left(( 0.9964-1.8383i) e^{\left( i\frac{\sqrt{15}}{4}\right) t} +( 0.9964+1.8383i) e^{\left( i\frac{\sqrt{15}}{4}\right) t}\right) +\frac{1}{138} e^{-10t}}

    d. Engine excitation F(t)=5e10tcos10tF( t) =5e^{-10t}\cos 10t

    Solution
    Step 1: Homogeneous Part
    2d2x(t)dt2+7dx(t)dt+8x(t)=02\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =0
    Step 2: Nonhomogeneous Part
    2d2x(t)dt2+7dx(t)dt+8x(t)=5e10tcos10t,r(t)=eαtPn(t)=5e10tcos10t=5e10tRe[ei10t]=Re[5e(10+10i)t]\begin{array}{l}2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =5e^{-10t}\cos 10t,\\\begin{aligned} r( t) & =e^{\alpha t} P_{n}( t) =5e^{-10t}\cos 10t\\ & =5e^{-10t} Re\left[ e^{i10t}\right] =Re\left[ 5e^{( -10+10i) t}\right] \end{aligned} \end{array}
    Characteristic equation:
    2m2+7m+8=0m=7±724(2)(8)2(2)=7±154=74±i154\begin{aligned}2m^{2} +7m+8 & =0\\m & =-\frac{-7\pm \sqrt{7^{2} -4( 2)( 8)}}{2( 2)}\\& =\frac{-7\pm \sqrt{-15}}{4}\\& =-\frac{7}{4} \pm i\frac{\sqrt{15}}{4}\end{aligned}

    Comment: A pair of complex conjugates roots
    (m1=74+i154, m2=74i154m_{1} =-\frac{7}{4} +i\frac{\sqrt{15}}{4} ,\ m_{2} =-\frac{7}{4} -i\frac{\sqrt{15}}{4})

    Complementary solution:
    x(t)=e(74)t(c1e(i154)t+c2e(i154)t)x( t) = e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right)
    For exponential function, Re[5e(10+10i)t] Re\left[ 5e^{( -10+10i) t}\right],
    α=10+10i, n=0 \alpha =-10+10i,\ n=0

    Since αm1 or m2 \alpha \neq m_{1} \ \text{or} \ m_{2},
    xp(t)=e(αt)Qn(t)=Ae(10t)\begin{aligned} x_{p}( t) & =e^{( \alpha t)} Q_{n}( t) =Ae^{( -10t)} \end{aligned}

    Assume xp,real=Re[xp] x_{p,real} =Re[ x_{p}],
    xp(t)=e(αt)Qn(t)=Ae(10+10i)t\begin{aligned} x_{p}( t) & =e^{( \alpha t)} Q_{n}( t) =Ae^{( -10+10i) t} \end{aligned}

    Differentiate it gives,
    ddx(xp(t))=(10+10i)Ae(10+10i)td2dx2(xp(t))=(200i)Ae(10+10i)t\begin{aligned} \frac{d}{dx}( x_{p}( t)) & =( -10+10i) Ae^{( -10+10i) t}\\& \\\frac{d^{2}}{dx^{2}}( x_{p}( t)) & =( -200i) Ae^{( -10+10i) t}\end{aligned}

    Then, we get
    2d2x(t)dt2+7dx(t)dt+8x(t)=5e10tcos10t2((200i)Ae(10+10i)t)+7((10+10i)Ae(10+10i)t)+8(Ae(10+10i)t)=5e(10+10i)te(10+10i)t(2(200i)+7(10+10i)+8)A=5e(10+10i)t\begin{aligned} 2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) & =5e^{-10t}\cos 10t\\ 2\left(( -200i) Ae^{( -10+10i) t}\right) +7\left(( -10+10i) Ae^{( -10+10i) t}\right) +8\left( Ae^{( -10+10i) t}\right) & =5e^{( -10+10i) t}\\ e^{( -10+10i) t}( 2( -200i) +7( -10+10i) +8) A & =5e^{( -10+10i) t} \end{aligned}

    Comparing the coefficient,
    (2(200i)+7(10+10i)+8)A=5A=562330i( 2( -200i) +7( -10+10i) +8) A=5\Longrightarrow A=\frac{5}{-62-330i}

    Actual particular solution, xp(t)=e(αt)Qn(t)=562330ie(10+10i)t=562330ie(10)t(cos10t+isin10t)×63+330i63+330i=(1650sin10t310cos10t)+i(1650cos10t310sin10t)112744e(10)t\begin{aligned} x_{p}( t) & =e^{( \alpha t)} Q_{n}( t) =\frac{5}{-62-330i} e^{( -10+10i) t}\\& =\frac{5}{-62-330i} e^{( -10) t}(\cos 10t+i\sin 10t) \times \frac{-63+330i}{-63+330i}\\& =\frac{( -1650\sin 10t-310\cos 10t) +i( 1650\cos 10t-310\sin 10t)}{112744} e^{( -10) t} \end{aligned}

    xp,real(t)=Re[xp]=(0.01463sin10t0.002750cos10t)e(10)tx_{p,real}( t) =Re[ x_{p}] =( -0.01463\sin 10t-0.002750\cos 10t) e^{( -10) t}

    The complete/general solution to 2d2x(t)dt2+7dx(t)dt+8x(t)=5e10tcos10t 2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =5e^{-10t}\cos 10t is xtotal=xc+xp=e(74)t(c1e(i154)t+c2e(i154)t)+(0.01463sin10t0.002750cos10t)e(10)t x_{total} =x_{c} +x_{p} =e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) +( -0.01463\sin 10t-0.002750\cos 10t) e^{( -10) t}

    Initial Value Problem

    x(0)=e(74)0(c1e(i154)0+c2e(i154)0)+(0.01463sin10(0)0.002750cos10(0))e(10)(0)=2c1+c2=2.0028\begin{aligned} x( 0) &=e^{\left( -\frac{7}{4}\right) 0}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) +( -0.01463\sin 10( 0) -0.002750\cos 10( 0)) e^{(-10)(0)} =2\\ c_{1} +c_{2} &=2.0028 \end{aligned}x˙total=e(74)t(i154c1e(i154)ti154c2e(i154)t)74e(74)t(c1e(i154)t+c2e(i154)t)+(0.1463cos10t+0.0275sin10t)e(10)t+(0.1463sin10t+0.0275cos10t)e(10)tx˙(0)=e(74)0(i154c1e(i154)0i154c2e(i154)0)74e(74)0(c1e(i154)0+c2e(i154)0)+(0.1463cos10(0)+0.0275sin10(0))e(10)0+(0.1463sin10(0)+0.0275cos10(0))e(10)0=0\begin{aligned} \dot{x}_{total} & =e^{\left( -\frac{7}{4}\right) t}\left( i\frac{\sqrt{15}}{4} c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} -i\frac{\sqrt{15}}{4} c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) -\frac{7}{4} e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right)\\ & +( -0.1463\cos 10t+0.0275\sin 10t) e^{( -10) t} +( 0.1463\sin 10t+0.0275\cos 10t) e^{( -10) t}\\ \dot{x}( 0) & =e^{\left( -\frac{7}{4}\right) 0}\left( i\frac{\sqrt{15}}{4} c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} -i\frac{\sqrt{15}}{4} c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) -\frac{7}{4} e^{\left( -\frac{7}{4}\right) 0}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right)\\ & +( -0.1463\cos 10( 0) +0.0275\sin 10( 0)) e^{( -10) 0} +( 0.1463\sin 10( 0) +0.0275\cos 10( 0)) e^{( -10) 0} =0 \end{aligned}

    c2=3.62371.9392i1.9365×ii=1.8713+1.0014i;c1=3.87411.0014i c_{2} =\frac{3.6237-1.9392i}{-1.9365} \times \frac{i}{i} =1.8713+1.0014i;\quad c_{1} =3.8741-1.0014i

    x(t)=e(74)t((3.87411.0014i)e(i154)t+(1.8713+1.0014i)e(i154)t)+(0.01463sin10t0.002750cos10t)e(10)t\mathbf{x( t) =e^{\left( -\frac{7}{4}\right) t}\left(( 3.8741-1.0014i) e^{\left( i\frac{\sqrt{15}}{4}\right) t} +( 1.8713+1.0014i) e^{\left( i\frac{\sqrt{15}}{4}\right) t}\right) +( -0.01463\sin 10t-0.002750\cos 10t) e^{( -10) t}}

    e. Road excitation F(t)=10F( t) =10

    Solution
    Step 1: Homogeneous Part
    2d2x(t)dt2+7dx(t)dt+8x(t)=02\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =0
    Step 2: Nonhomogeneous Part
    2d2x(t)dt2+7dx(t)dt+8x(t)=10,r(t)=eαtPn(t)=10\begin{array}{l}2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =10,\\r( t) =e^{\alpha t} P_{n}( t) =10\end{array}
    Characteristic equation:
    2m2+7m+8=0m=7±724(2)(8)2(2)=7±154=74±i154\begin{aligned}2m^{2} +7m+8 & =0\\m & =-\frac{-7\pm \sqrt{7^{2} -4( 2)( 8)}}{2( 2)}\\& =\frac{-7\pm \sqrt{-15}}{4}\\& =-\frac{7}{4} \pm i\frac{\sqrt{15}}{4}\end{aligned}

    Comment: A pair of complex conjugates roots
    (m1=74+i154, m2=74i154m_{1} =-\frac{7}{4} +i\frac{\sqrt{15}}{4} ,\ m_{2} =-\frac{7}{4} -i\frac{\sqrt{15}}{4})

    Complementary solution:
    x(t)=e(74)t(c1e(i154)t+c2e(i154)t)x( t) = e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right)
    For polynomial function, 10 10, α=0, n=0 \alpha =0,\ n=0

    Since αm1 or m2 \alpha \neq m_{1} \ \text{or} \ m_{2},
    xp=e(αt)Qn(t)=Ax_{p} =e^{( \alpha t)} Q_{n}( t) =A

    Differentiate it gives,
    ddx(xp(t))=0d2dx2(xp(t))=0\begin{aligned}\frac{d}{dx}( x_{p}( t)) & =0\\\frac{d^{2}}{dx^{2}}( x_{p}( t)) & =0\end{aligned}

    Then, we get
    2d2x(t)dt2+7dx(t)dt+8x(t)=102(0)+7(0)+8A=10A=1.25\begin{aligned}2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) & =10\\2( 0) +7( 0) +8A & =10\\A & =1.25\end{aligned}

    Actual particular solution,xp(t)=1.25x_{p}( t) =1.25

    The complete/general solution to 2d2x(t)dt2+7dx(t)dt+8x(t)=10 2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =10 is xtotal=xc+xp=e(74)t(c1e(i154)t+c2e(i154)t)+1.25 x_{total} =x_{c} +x_{p} =e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) +1.25

    Initial Value Problem

    x(0)=e(74)0(c1e(i154)0+c2e(i154)0)+1.25=2c1+c2=0.75 x( 0) =e^{\left( -\frac{7}{4}\right) 0}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) +1.25=2\Longrightarrow c_{1} +c_{2} =0.75

    x˙total=e(74)t(i154c1e(i154)ti154c2e(i154)t)74e(74)t(c1e(i154)t+c2e(i154)t)x˙(0)=e(74)0(i154c1e(i154)0i154c2e(i154)0)74e(74)0(c1e(i154)0+c2e(i154)0)=0x˙(0)=(i154c1i154c2)74(c1+c2)=0\begin{aligned} \dot{x}_{total} & =e^{\left( -\frac{7}{4}\right) t}\left( i\frac{\sqrt{15}}{4} c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} -i\frac{\sqrt{15}}{4} c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) -\frac{7}{4} e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right)\\ \dot{x}( 0) & =e^{\left( -\frac{7}{4}\right) 0}\left( i\frac{\sqrt{15}}{4} c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} -i\frac{\sqrt{15}}{4} c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) -\frac{7}{4} e^{\left( -\frac{7}{4}\right) 0}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) =0\\ \dot{x}( 0) & =\left( i\frac{\sqrt{15}}{4} c_{1} -i\frac{\sqrt{15}}{4} c_{2}\right) -\frac{7}{4}( c_{1} +c_{2}) =0 \end{aligned}

    i154(0.75c2)i154c274(0.75)=0c2=0.3750+0.6778i; c1=0.37500.6778i i\frac{\sqrt{15}}{4}( 0.75-c_{2}) -i\frac{\sqrt{15}}{4} c_{2} -\frac{7}{4}( 0.75) =0\Longrightarrow c_{2} =0.3750+0.6778i;\ c_{1} =0.3750-0.6778i

    x(t)=e(74)t((0.37500.6778i)e(i154)t+(0.3750+0.6778i)e(i154)t)+1.25 \mathbf{x( t) =e^{\left( -\frac{7}{4}\right) t}\left(( 0.3750-0.6778i) e^{\left( i\frac{\sqrt{15}}{4}\right) t} +( 0.3750+0.6778i) e^{\left( i\frac{\sqrt{15}}{4}\right) t}\right) +1.25}

    f. Road excitation F(t)=5t2+7t+9F( t) =5t^{2} +7t+9

    Solution
    Step 1: Homogeneous Part
    2d2x(t)dt2+7dx(t)dt+8x(t)=02\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =0
    Step 2: Nonhomogeneous Part
    2d2x(t)dt2+7dx(t)dt+8x(t)=5t2+7t+9,2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =5t^{2} +7t+9,
    r(t)=eαtPn(t)=5t2+7t+9r( t) =e^{\alpha t} P_{n}( t) =5t^{2} +7t+9
    Characteristic equation:
    2m2+7m+8=0m=7±724(2)(8)2(2)=7±154=74±i154\begin{aligned}2m^{2} +7m+8 & =0\\m & =-\frac{-7\pm \sqrt{7^{2} -4( 2)( 8)}}{2( 2)}\\& =\frac{-7\pm \sqrt{-15}}{4}\\& =-\frac{7}{4} \pm i\frac{\sqrt{15}}{4}\end{aligned}

    Comment: A pair of complex conjugates roots
    (m1=74+i154, m2=74i154m_{1} =-\frac{7}{4} +i\frac{\sqrt{15}}{4} ,\ m_{2} =-\frac{7}{4} -i\frac{\sqrt{15}}{4})

    Complementary solution:
    x(t)=e(74)t(c1e(i154)t+c2e(i154)t)x( t) = e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right)
    For polynomial function, 5t2+7t+9 5t^{2} +7t+9, α=0, n=2 \alpha =0,\ n=2

    Since αm1 or m2 \alpha \neq m_{1} \ \text{or} \ m_{2},
    xp=e(αt)Qn(t)=At2+Bt+Cx_{p} =e^{( \alpha t)} Q_{n}( t) =At^{2} +Bt+C

    Differentiate it gives,
    ddx(xp(t))=2At+Bd2dx2(xp(t))=2A\begin{aligned}\frac{d}{dx}( x_{p}( t)) & =2At+B\\\frac{d^{2}}{dx^{2}}( x_{p}( t)) & =2A\end{aligned}

    Then, we get
    2d2x(t)dt2+7dx(t)dt+8x(t)=5t2+7t+92(2A)+7(2At+B)+8(At2+Bt+C)=5t2+7t+94A+7B+8C+14At+8Bt+8A2t=5t2+7t+9\begin{aligned}2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) & =5t^{2} +7t+9\\2( 2A) +7( 2At+B) +8\left( At^{2} +Bt+C\right) & =5t^{2} +7t+9\\4A+7B+8C+14At+8Bt+8A^{2} t & =5t^{2} +7t+9\end{aligned}

    Comparing coefficients,
    t2:8A=5A=0.625 t^{2} :\quad 8A=5\Longrightarrow A=0.625
    t:14A+8B=714(0.625)+8B=7B=0.2188 t:\quad 14A+8B=7\Longrightarrow 14( 0.625) +8B=7\Longrightarrow B=-0.2188
    t0:4A+7B+8C=94(0.625)+8)0.2188)+8C=9C=1.0040 t^{0} :\quad 4A+7B+8C=9\Longrightarrow 4( 0.625) +8) -0.2188) +8C=9\Longrightarrow C=1.0040
    Actual particular solution,
    xp(t)=0.625t20.2188B+1.0040x_{p}( t) =0.625t^{2} -0.2188B+1.0040

    The complete/general solution to 2d2x(t)dt2+7dx(t)dt+8x(t)=5t2+7t+9 2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =5t^{2} +7t+9 is xtotal=xc+xp=e(74)t(c1e(i154)t+c2e(i154)t)+0.625t20.2188t+1.0040 x_{total} =x_{c} +x_{p} =e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) +0.625t^{2} -0.2188t+1.0040

    Initial Value Problem

    x(0)=e(74)0(c1e(i154)0+c2e(i154)0)+0.625(0)20.2188(0)+1.0040=2c1+c2=0.996 x( 0) =e^{\left( -\frac{7}{4}\right) 0}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) +0.625( 0)^{2} -0.2188( 0) +1.0040=2\Longrightarrow c_{1} +c_{2} =0.996

    x˙total=e(74)t(i154c1e(i154)ti154c2e(i154)t)74e(74)t(c1e(i154)t+c2e(i154)t)+1.25t0.2188x˙(0)=e(74)0(i154c1e(i154)0i154c2e(i154)0)74e(74)0(c1e(i154)0+c2e(i154)0)+1.25(0)0.2188=0x˙(0)=(i154c1i154c2)74(c1+c2)0.2188=0\begin{aligned} \dot{x}_{total} & =e^{\left( -\frac{7}{4}\right) t}\left( i\frac{\sqrt{15}}{4} c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} -i\frac{\sqrt{15}}{4} c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) -\frac{7}{4} e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) +1.25t-0.2188\\ \dot{x}( 0) & =e^{\left( -\frac{7}{4}\right) 0}\left( i\frac{\sqrt{15}}{4} c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} -i\frac{\sqrt{15}}{4} c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) -\frac{7}{4} e^{\left( -\frac{7}{4}\right) 0}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) +1.25( 0) -0.2188=0\\ \dot{x}( 0) & =\left( i\frac{\sqrt{15}}{4} c_{1} -i\frac{\sqrt{15}}{4} c_{2}\right) -\frac{7}{4}( c_{1} +c_{2}) -0.2188=0 \end{aligned}

    c2=1.96180.9644i1.9365i=0.4980+1.0131i; c1=0.49801.0131i \Longrightarrow c_{2} =\frac{1.9618-0.9644i}{-1.9365i} =0.4980+1.0131i;\ c_{1} =0.4980-1.0131i

    x(t)=e(74)t((0.49801.0131i)e(i154)t+(0.4980+1.0131i)e(i154)t)+0.625t20.2188t+1.0040 \mathbf{x( t) =e^{\left( -\frac{7}{4}\right) t}\left(( 0.4980-1.0131i) e^{\left( i\frac{\sqrt{15}}{4}\right) t} +( 0.4980+1.0131i) e^{\left( i\frac{\sqrt{15}}{4}\right) t}\right) +0.625t^{2} -0.2188t+1.0040}

    g. Road excitation F(t)=6tet+3tF( t) =6te^{t} +3t

    Solution
    Step 1: Homogeneous Part
    2d2x(t)dt2+7dx(t)dt+8x(t)=02\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =0
    Step 2: Nonhomogeneous Part
    2d2x(t)dt2+7dx(t)dt+8x(t)=6tet+3t,2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =6te^{t} +3t,
    r(t)=eαtPn(t)=6tet+3tr( t) =e^{\alpha t} P_{n}( t) =6te^{t} +3t
    Characteristic equation:
    2m2+7m+8=0m=7±724(2)(8)2(2)=7±154=74±i154\begin{aligned}2m^{2} +7m+8 & =0\\m & =-\frac{-7\pm \sqrt{7^{2} -4( 2)( 8)}}{2( 2)}\\& =\frac{-7\pm \sqrt{-15}}{4}\\& =-\frac{7}{4} \pm i\frac{\sqrt{15}}{4}\end{aligned}

    Comment: A pair of complex conjugates roots
    (m1=74+i154, m2=74i154m_{1} =-\frac{7}{4} +i\frac{\sqrt{15}}{4} ,\ m_{2} =-\frac{7}{4} -i\frac{\sqrt{15}}{4})

    Complementary solution:
    x(t)=e(74)t(c1e(i154)t+c2e(i154)t)x( t) = e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right)
    ui(t)=r(t)x2(t)W(y1,y2)dt=(6tet+3t)e(74i154)ti2154e144tdt=1215ite(2.75i154)tdt615ite(2.75i154)tdt \begin{aligned}u_{i}( t) & =-\int \frac{r( t) x_{2}( t)}{W( y_{1} ,y_{2})} dt=-\int \frac{\left( 6te^{t} +3t\right) e^{\left( -\frac{7}{4} -i\frac{\sqrt{15}}{4}\right) t}}{-i\frac{2\sqrt{15}}{4} e^{-\frac{14}{4} t}} dt\\& =-\frac{12}{\sqrt{15}} i\int te^{\left( 2.75-i\frac{\sqrt{15}}{4}\right) t} dt-\frac{6}{\sqrt{15}} i\int te^{\left( 2.75-i\frac{\sqrt{15}}{4}\right) t} dt\end{aligned}

    Integration by part,
    1215itue(2.75i154)tdtdv=1215i[tue(2.75i154)t(2.75i154)ve(2.75i154)t(2.75i154)vdtdu]=1215i[te(2.75i154)t(2.75i154)e(2.75i154)t(2.75i154)2] \begin{aligned}&-\frac{12}{\sqrt{15}} i\int \underbrace{t}_{u}\underbrace{e^{\left( 2.75-i\frac{\sqrt{15}}{4}\right) t} dt}_{dv}\\&=-\frac{12}{\sqrt{15}} i\left[\underbrace{t}_{u}\underbrace{\frac{e^{\left( 2.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75-i\frac{\sqrt{15}}{4}\right)}}_{v} -\int \underbrace{\frac{e^{\left( 2.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75-i\frac{\sqrt{15}}{4}\right)}}_{v}\underbrace{dt}_{du}\right]\\&=-\frac{12}{\sqrt{15}} i\left[ t\frac{e^{\left( 2.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75-i\frac{\sqrt{15}}{4}\right)} -\frac{e^{\left( 2.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75-i\frac{\sqrt{15}}{4}\right)^{2}}\right]\end{aligned}
    615ite(2.75i154)tdt=615i[tue(1.75i154)t(1.75i154)ve(1.75i154)t(1.75i154)vdtdu]=615i[te(1.75i154)t(1.75i154)e(1.75i154)t(1.75i154)2]\begin{aligned}&-\frac{6}{\sqrt{15}} i\int te^{\left( 2.75-i\frac{\sqrt{15}}{4}\right) t} dt\\&=-\frac{6}{\sqrt{15}} i\left[\underbrace{t}_{u}\underbrace{\frac{e^{\left( 1.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75-i\frac{\sqrt{15}}{4}\right)}}_{v} -\int \underbrace{\frac{e^{\left( 1.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75-i\frac{\sqrt{15}}{4}\right)}}_{v}\underbrace{dt}_{du}\right]\\&=-\frac{6}{\sqrt{15}} i\left[ t\frac{e^{\left( 1.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75-i\frac{\sqrt{15}}{4}\right)} -\frac{e^{\left( 1.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75-i\frac{\sqrt{15}}{4}\right)^{2}}\right]\end{aligned}
    u1(t)=1215i[te(2.75i154)t(2.75i154)e(2.75i154)t(2.75i154)2]615i[te(1.75i154)t(1.75i154)e(1.75i154)t(1.75i154)2] \begin{aligned}u_{1}( t) &=-\frac{12}{\sqrt{15}} i\left[ t\frac{e^{\left( 2.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75-i\frac{\sqrt{15}}{4}\right)} -\frac{e^{\left( 2.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75-i\frac{\sqrt{15}}{4}\right)^{2}}\right]\\&-\frac{6}{\sqrt{15}} i\left[ t\frac{e^{\left( 1.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75-i\frac{\sqrt{15}}{4}\right)} -\frac{e^{\left( 1.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75-i\frac{\sqrt{15}}{4}\right)^{2}}\right]\end{aligned}
    u2(t)=r(t)x1(t)W(x1,x2)dt=(6tet+3t)e(74+i154)ti2154e144tdt=1215ite(2.75+i154)t+615ite(1.75+i154)tdt \begin{aligned}u_{2}( t) & =\int \frac{r( t) x_{1}( t)}{W( x_{1} ,x_{2})} dt=\int \frac{\left( 6te^{t} +3t\right) e^{\left( -\frac{7}{4} +i\frac{\sqrt{15}}{4}\right) t}}{-i\frac{2\sqrt{15}}{4} e^{-\frac{14}{4} t}} dt\\& =\frac{12}{\sqrt{15}} i\int te^{\left( 2.75+i\frac{\sqrt{15}}{4}\right) t} +\frac{6}{\sqrt{15}} i\int te^{\left( 1.75+i\frac{\sqrt{15}}{4}\right) t} dt\end{aligned}

    Integration by part,
    1215itue(2.75+i154)tdtdv=1215i[tue(2.75+i154)t(2.75+i154)ve(2.75+i154)t(2.75+i154)vdtdu]=1215i[te(2.75+i154)t(2.75+i154)e(2.75+i154)t(2.75+i154)2] \begin{aligned}&\frac{12}{\sqrt{15}} i\int \underbrace{t}_{u}\underbrace{e^{\left( 2.75+i\frac{\sqrt{15}}{4}\right) t} dt}_{dv}\\&=\frac{12}{\sqrt{15}} i\left[\underbrace{t}_{u}\underbrace{\frac{e^{\left( 2.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75+i\frac{\sqrt{15}}{4}\right)}}_{v} -\int \underbrace{\frac{e^{\left( 2.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75+i\frac{\sqrt{15}}{4}\right)}}_{v}\underbrace{dt}_{du}\right]\\&=\frac{12}{\sqrt{15}} i\left[ t\frac{e^{\left( 2.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75+i\frac{\sqrt{15}}{4}\right)} -\frac{e^{\left( 2.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75+i\frac{\sqrt{15}}{4}\right)^{2}}\right]\end{aligned}
    615ite(1.75+i154)tdt=615i[tue(1.75+i154)t(1.75+i154)ve(1.75+i154)t(1.75+i154)2vdtdu]=615i[te(1.75+i154)t(1.75+i154)e(1.75+i154)t(1.75+i154)2] \begin{aligned}&\frac{6}{\sqrt{15}} i\int te^{\left( 1.75+i\frac{\sqrt{15}}{4}\right) t} dt\\&=\frac{6}{\sqrt{15}} i\left[\underbrace{t}_{u}\underbrace{\frac{e^{\left( 1.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)}}_{v} -\int \underbrace{\frac{e^{\left( 1.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)^{2}}}_{v}\underbrace{dt}_{du}\right]\\&=\frac{6}{\sqrt{15}} i\left[ t\frac{e^{\left( 1.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)} -\frac{e^{\left( 1.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)^{2}}\right]\end{aligned}
    615ite(1.75+i154)tdt=615i[tue(1.75+i154)t(1.75+i154)ve(1.75+i154)t(1.75+i154)2vdtdu]=615i[te(1.75+i154)t(1.75+i154)e(1.75+i154)t(1.75+i154)2]\begin{aligned}&\frac{6}{\sqrt{15}} i\int te^{\left( 1.75+i\frac{\sqrt{15}}{4}\right) t} dt\\&=\frac{6}{\sqrt{15}} i\left[\underbrace{t}_{u}\underbrace{\frac{e^{\left( 1.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)}}_{v} -\int \underbrace{\frac{e^{\left( 1.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)^{2}}}_{v}\underbrace{dt}_{du}\right]\\&=\frac{6}{\sqrt{15}} i\left[ t\frac{e^{\left( 1.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)} -\frac{e^{\left( 1.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)^{2}}\right]\end{aligned}
    u2(t)=1215i[te(2.75+i154)t(2.75+i154)e(2.75+i154)t(2.75+i154)2+615i[te(1.75+i154)t(1.75+i154)e(1.75+i154)t(1.75+i154)2]\begin{aligned}u_{2}( t) &=\frac{12}{\sqrt{15}} i[ t\frac{e^{\left( 2.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75+i\frac{\sqrt{15}}{4}\right)} -\frac{e^{\left( 2.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75+i\frac{\sqrt{15}}{4}\right)^{2}}\\ &+\frac{6}{\sqrt{15}} i\left[ t\frac{e^{\left( 1.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)} -\frac{e^{\left( 1.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)^{2}}\right]\end{aligned}
    xp=u1(t)x1(t)+u2(t)x2(t)x_{p} =u_{1}( t) x_{1}( t) +u_{2}( t) x_{2}( t)

    where:
    u1(t)x1(t)={1215i[te(2.75i154)t(2.75i154)e(2.75i154)t(2.75i154)2]615i[te(1.75i154)t(1.75i154)e(1.75i154)t(1.75i154)2]}e(74+i154)t=1215i[tet(2.75i154)et(2.75i154)2]615i[t1(1.75i154)1(1.75i154)2] \begin{aligned}u_{1}( t) x_{1}( t) & =\{-\frac{12}{\sqrt{15}} i\left[ t\frac{e^{\left( 2.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75-i\frac{\sqrt{15}}{4}\right)} -\frac{e^{\left( 2.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75-i\frac{\sqrt{15}}{4}\right)^{2}}\right]\\& -\frac{6}{\sqrt{15}} i\left[ t\frac{e^{\left( 1.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75-i\frac{\sqrt{15}}{4}\right)} -\frac{e^{\left( 1.75-i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75-i\frac{\sqrt{15}}{4}\right)^{2}}\right]\} e^{\left( -\frac{7}{4} +i\frac{\sqrt{15}}{4}\right) t}\\& =-\frac{12}{\sqrt{15}} i\left[ t\frac{e^{t}}{\left( 2.75-i\frac{\sqrt{15}}{4}\right)} -\frac{e^{t}}{\left( 2.75-i\frac{\sqrt{15}}{4}\right)^{2}}\right]\\& -\frac{6}{\sqrt{15}} i\left[ t\frac{1}{\left( 1.75-i\frac{\sqrt{15}}{4}\right)} -\frac{1}{\left( 1.75-i\frac{\sqrt{15}}{4}\right)^{2}}\right]\end{aligned}

    u1(t)x1(t)={1215i[te(2.75+i154)t(2.75+i154)e(2.75+i154)t(2.75+i154)2+615i[te(1.75+i154)t(1.75+i154)e(1.75+i154)t(1.75+i154)2]}e(74i154)t=1215i[tet(2.75+i154)et(2.75+i154)2+615i[t1(1.75+i154)1(1.75+i154)2] \begin{aligned} u_{1}( t) x_{1}( t) & =\{\frac{12}{\sqrt{15}} i[ t\frac{e^{\left( 2.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75+i\frac{\sqrt{15}}{4}\right)} -\frac{e^{\left( 2.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 2.75+i\frac{\sqrt{15}}{4}\right)^{2}}\\& +\frac{6}{\sqrt{15}} i\left[ t\frac{e^{\left( 1.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)} -\frac{e^{\left( 1.75+i\frac{\sqrt{15}}{4}\right) t}}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)^{2}}\right]\} e^{\left( -\frac{7}{4} -i\frac{\sqrt{15}}{4}\right) t}\\& =\frac{12}{\sqrt{15}} i[ t\frac{e^{t}}{\left( 2.75+i\frac{\sqrt{15}}{4}\right)} -\frac{e^{t}}{\left( 2.75+i\frac{\sqrt{15}}{4}\right)^{2}}\\& +\frac{6}{\sqrt{15}} i\left[ t\frac{1}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)} -\frac{1}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)^{2}}\right]\end{aligned}

    xp(t)=u1(t)x1(t)+u2(t)x2(t)=1215i[tet(2.75i154)et(2.75i154)2]+1215i[tet(2.75+i154)et(2.75+i154)2]615i[t1(1.75i154)1(1.75i154)2]+615i[t1(1.75+i154)1(1.75+i154)2]=1215i[tet(2.75i154)8.5et(6.625+i1.37515)72.25]+1215i[tet(2.75i154)8.5et(6.625i1.37515)72.25]615i[t(1.75+i154)4(2.125+i0.87515)16]+615i[t(1.75i154)4(2.125i0.87515)16]=[2415itet(i154)8.5+2415iet(i1.37515)8.5]+[1215it(i154)4+1215i(i0.87515)16]=[+1217tet132289et+34et2132] \begin{aligned}x_{p}( t) & =u_{1}( t) x_{1}( t) +u_{2}( t) x_{2}( t)\\& =-\frac{12}{\sqrt{15}} i\left[ t\frac{e^{t}}{\left( 2.75-i\frac{\sqrt{15}}{4}\right)} -\frac{e^{t}}{\left( 2.75-i\frac{\sqrt{15}}{4}\right)^{2}}\right]\\& +\frac{12}{\sqrt{15}} i\left[ t\frac{e^{t}}{\left( 2.75+i\frac{\sqrt{15}}{4}\right)} -\frac{e^{t}}{\left( 2.75+i\frac{\sqrt{15}}{4}\right)^{2}}\right]\\& -\frac{6}{\sqrt{15}} i\left[ t\frac{1}{\left( 1.75-i\frac{\sqrt{15}}{4}\right)} -\frac{1}{\left( 1.75-i\frac{\sqrt{15}}{4}\right)^{2}}\right]\\& +\frac{6}{\sqrt{15}} i\left[ t\frac{1}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)} -\frac{1}{\left( 1.75+i\frac{\sqrt{15}}{4}\right)^{2}}\right]\\& =-\frac{12}{\sqrt{15}} i\left[ t\frac{e^{t}\left( 2.75-i\frac{\sqrt{15}}{4}\right)}{8.5} -\frac{e^{t}\left( 6.625+i1.375\sqrt{15}\right)}{72.25}\right]\\& +\frac{12}{\sqrt{15}} i\left[ t\frac{e^{t}\left( 2.75-i\frac{\sqrt{15}}{4}\right)}{8.5} -\frac{e^{t}\left( 6.625-i1.375\sqrt{15}\right)}{72.25}\right]\\& -\frac{6}{\sqrt{15}} i\left[ t\frac{\left( 1.75+i\frac{\sqrt{15}}{4}\right)}{4} -\frac{\left( 2.125+i0.875\sqrt{15}\right)}{16}\right]\\& +\frac{6}{\sqrt{15}} i\left[ t\frac{\left( 1.75-i\frac{\sqrt{15}}{4}\right)}{4} -\frac{\left( 2.125-i0.875\sqrt{15}\right)}{16}\right]\\& =\left[ -\frac{24}{\sqrt{15}} it\frac{e^{t}\left( i\frac{\sqrt{15}}{4}\right)}{8.5} +\frac{24}{\sqrt{15}} i\frac{e^{t}\left( i1.375\sqrt{15}\right)}{8.5}\right]\\& +\left[ -\frac{12}{\sqrt{15}} it\frac{\left( i\frac{\sqrt{15}}{4}\right)}{4} +\frac{12}{\sqrt{15}} i\frac{\left( i0.875\sqrt{15}\right)}{16}\right]\\& =\left[ +\frac{12}{17} te^{t} -\frac{132}{289} e^{t} +\frac{3}{4} e^{t} -\frac{21}{32}\right]\end{aligned}

    The complete/general solution to 2d2x(t)dt2+7dx(t)dt+8x(t)=6tet+3t 2\frac{d^{2} x( t)}{dt^{2}} +7\frac{dx( t)}{dt} +8x( t) =6te^{t} +3t is xtotal=xc+xp=e(74)t(c1e(i154)t+c2e(i154)t)+1217tet132289et+34et2132 x_{total} =x_{c} +x_{p} =e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) +\frac{12}{17} te^{t} -\frac{132}{289} e^{t} +\frac{3}{4} e^{t} -\frac{21}{32}

    Initial Value Problem

    x(0)=e(74)0(c1e(i154)0+c2e(i154)0)+1217(0)e0132289e0+34e02132=2c1+c2=2.363 x( 0) =e^{\left( -\frac{7}{4}\right) 0}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) +\frac{12}{17}( 0) e^{0} -\frac{132}{289} e^{0} +\frac{3}{4} e^{0} -\frac{21}{32} =2\Longrightarrow c_{1} +c_{2} =2.363

    x˙total=e(74)t(i154c1e(i154)ti154c2e(i154)t)74e(74)t(c1e(i154)t+c2e(i154)t)+1217(et(1+t))132289et+34etx˙(0)=e(74)0(i154c1e(i154)0i154c2e(i154)0)74e(74)0(c1e(i154)0+c2e(i154)0)+1217(e0(1+0))132289e0+34e0=0x˙(0)=(i154c1i154c2)74(c1+c2)+0.9991=0\begin{aligned} \dot{x}_{total} & =e^{\left( -\frac{7}{4}\right) t}\left( i\frac{\sqrt{15}}{4} c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} -i\frac{\sqrt{15}}{4} c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) -\frac{7}{4} e^{\left( -\frac{7}{4}\right) t}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) t} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) t}\right) +\frac{12}{17}\left( e^{t}( 1+t)\right) -\frac{132}{289} e^{t} +\frac{3}{4} e^{t}\\ \dot{x}( 0) & =e^{\left( -\frac{7}{4}\right) 0}\left( i\frac{\sqrt{15}}{4} c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} -i\frac{\sqrt{15}}{4} c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) -\frac{7}{4} e^{\left( -\frac{7}{4}\right) 0}\left( c_{1} e^{\left( i\frac{\sqrt{15}}{4}\right) 0} +c_{2} e^{\left( -i\frac{\sqrt{15}}{4}\right) 0}\right) +\frac{12}{17}\left( e^{0}( 1+0)\right) -\frac{132}{289} e^{0} +\frac{3}{4} e^{0} =0\\ \dot{x}( 0) & =\left( i\frac{\sqrt{15}}{4} c_{1} -i\frac{\sqrt{15}}{4} c_{2}\right) -\frac{7}{4}( c_{1} +c_{2}) +0.9991=0 \end{aligned}

     c1=1.18151.6195i, c2=1.1815+1.6195i \Longrightarrow \ c_{1} =1.1815-1.6195i,\ c_{2} =1.1815+1.6195i

    x(t)=e(74)t((1.18151.6195)e(i154)t+(1.1815+1.6195)e(i154)t)+1217tet132289et+34et2132 \mathbf{x( t) =e^{\left( -\frac{7}{4}\right) t}\left(( 1.1815-1.6195) e^{\left( i\frac{\sqrt{15}}{4}\right) t} +( 1.1815+1.6195) e^{\left( i\frac{\sqrt{15}}{4}\right) t}\right) +}\frac{12}{17} te^{t} -\frac{132}{289} e^{t} +\frac{3}{4} e^{t} -\frac{21}{32}